spacemanidol commited on
Commit
e435cb4
1 Parent(s): 0a63259

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2798 -0
README.md CHANGED
@@ -1,3 +1,2801 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
1
  ---
2
  license: apache-2.0
3
+ tags:
4
+ - mteb
5
+ model-index:
6
+ - name: base-lc
7
+ results:
8
+ - task:
9
+ type: Classification
10
+ dataset:
11
+ type: mteb/amazon_counterfactual
12
+ name: MTEB AmazonCounterfactualClassification (en)
13
+ config: en
14
+ split: test
15
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
16
+ metrics:
17
+ - type: accuracy
18
+ value: 78.4776119402985
19
+ - type: ap
20
+ value: 42.34374238166049
21
+ - type: f1
22
+ value: 72.51164234732224
23
+ - task:
24
+ type: Classification
25
+ dataset:
26
+ type: mteb/amazon_polarity
27
+ name: MTEB AmazonPolarityClassification
28
+ config: default
29
+ split: test
30
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
31
+ metrics:
32
+ - type: accuracy
33
+ value: 78.7416
34
+ - type: ap
35
+ value: 73.12074819362377
36
+ - type: f1
37
+ value: 78.64057339708795
38
+ - task:
39
+ type: Classification
40
+ dataset:
41
+ type: mteb/amazon_reviews_multi
42
+ name: MTEB AmazonReviewsClassification (en)
43
+ config: en
44
+ split: test
45
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
46
+ metrics:
47
+ - type: accuracy
48
+ value: 39.926
49
+ - type: f1
50
+ value: 39.35531993117573
51
+ - task:
52
+ type: Retrieval
53
+ dataset:
54
+ type: mteb/arguana
55
+ name: MTEB ArguAna
56
+ config: default
57
+ split: test
58
+ revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
59
+ metrics:
60
+ - type: map_at_1
61
+ value: 34.851
62
+ - type: map_at_10
63
+ value: 51.473
64
+ - type: map_at_100
65
+ value: 52.103
66
+ - type: map_at_1000
67
+ value: 52.105000000000004
68
+ - type: map_at_3
69
+ value: 46.776
70
+ - type: map_at_5
71
+ value: 49.617
72
+ - type: mrr_at_1
73
+ value: 35.491
74
+ - type: mrr_at_10
75
+ value: 51.73799999999999
76
+ - type: mrr_at_100
77
+ value: 52.37500000000001
78
+ - type: mrr_at_1000
79
+ value: 52.378
80
+ - type: mrr_at_3
81
+ value: 46.965
82
+ - type: mrr_at_5
83
+ value: 49.878
84
+ - type: ndcg_at_1
85
+ value: 34.851
86
+ - type: ndcg_at_10
87
+ value: 60.364
88
+ - type: ndcg_at_100
89
+ value: 62.888999999999996
90
+ - type: ndcg_at_1000
91
+ value: 62.946000000000005
92
+ - type: ndcg_at_3
93
+ value: 50.807
94
+ - type: ndcg_at_5
95
+ value: 55.901
96
+ - type: precision_at_1
97
+ value: 34.851
98
+ - type: precision_at_10
99
+ value: 8.855
100
+ - type: precision_at_100
101
+ value: 0.992
102
+ - type: precision_at_1000
103
+ value: 0.1
104
+ - type: precision_at_3
105
+ value: 20.839
106
+ - type: precision_at_5
107
+ value: 14.963999999999999
108
+ - type: recall_at_1
109
+ value: 34.851
110
+ - type: recall_at_10
111
+ value: 88.549
112
+ - type: recall_at_100
113
+ value: 99.21799999999999
114
+ - type: recall_at_1000
115
+ value: 99.644
116
+ - type: recall_at_3
117
+ value: 62.517999999999994
118
+ - type: recall_at_5
119
+ value: 74.822
120
+ - task:
121
+ type: Clustering
122
+ dataset:
123
+ type: mteb/arxiv-clustering-p2p
124
+ name: MTEB ArxivClusteringP2P
125
+ config: default
126
+ split: test
127
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
128
+ metrics:
129
+ - type: v_measure
130
+ value: 45.5554998405317
131
+ - task:
132
+ type: Clustering
133
+ dataset:
134
+ type: mteb/arxiv-clustering-s2s
135
+ name: MTEB ArxivClusteringS2S
136
+ config: default
137
+ split: test
138
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
139
+ metrics:
140
+ - type: v_measure
141
+ value: 35.614248811397005
142
+ - task:
143
+ type: Reranking
144
+ dataset:
145
+ type: mteb/askubuntudupquestions-reranking
146
+ name: MTEB AskUbuntuDupQuestions
147
+ config: default
148
+ split: test
149
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
150
+ metrics:
151
+ - type: map
152
+ value: 61.355489424753884
153
+ - type: mrr
154
+ value: 75.49443784900849
155
+ - task:
156
+ type: STS
157
+ dataset:
158
+ type: mteb/biosses-sts
159
+ name: MTEB BIOSSES
160
+ config: default
161
+ split: test
162
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
163
+ metrics:
164
+ - type: cos_sim_pearson
165
+ value: 89.17311056578292
166
+ - type: cos_sim_spearman
167
+ value: 88.24237210809322
168
+ - type: euclidean_pearson
169
+ value: 87.3188065853646
170
+ - type: euclidean_spearman
171
+ value: 88.24237210809322
172
+ - type: manhattan_pearson
173
+ value: 86.89499710049658
174
+ - type: manhattan_spearman
175
+ value: 87.85441146091777
176
+ - task:
177
+ type: Classification
178
+ dataset:
179
+ type: mteb/banking77
180
+ name: MTEB Banking77Classification
181
+ config: default
182
+ split: test
183
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
184
+ metrics:
185
+ - type: accuracy
186
+ value: 80.26298701298703
187
+ - type: f1
188
+ value: 79.68356764080303
189
+ - task:
190
+ type: Clustering
191
+ dataset:
192
+ type: jinaai/big-patent-clustering
193
+ name: MTEB BigPatentClustering
194
+ config: default
195
+ split: test
196
+ revision: 62d5330920bca426ce9d3c76ea914f15fc83e891
197
+ metrics:
198
+ - type: v_measure
199
+ value: 20.923883720813706
200
+ - task:
201
+ type: Clustering
202
+ dataset:
203
+ type: mteb/biorxiv-clustering-p2p
204
+ name: MTEB BiorxivClusteringP2P
205
+ config: default
206
+ split: test
207
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
208
+ metrics:
209
+ - type: v_measure
210
+ value: 36.16058801465044
211
+ - task:
212
+ type: Clustering
213
+ dataset:
214
+ type: mteb/biorxiv-clustering-s2s
215
+ name: MTEB BiorxivClusteringS2S
216
+ config: default
217
+ split: test
218
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
219
+ metrics:
220
+ - type: v_measure
221
+ value: 30.1402356118627
222
+ - task:
223
+ type: Retrieval
224
+ dataset:
225
+ type: mteb/cqadupstack-android
226
+ name: MTEB CQADupstackAndroidRetrieval
227
+ config: default
228
+ split: test
229
+ revision: f46a197baaae43b4f621051089b82a364682dfeb
230
+ metrics:
231
+ - type: map_at_1
232
+ value: 35.612
233
+ - type: map_at_10
234
+ value: 47.117
235
+ - type: map_at_100
236
+ value: 48.711
237
+ - type: map_at_1000
238
+ value: 48.826
239
+ - type: map_at_3
240
+ value: 43.858999999999995
241
+ - type: map_at_5
242
+ value: 45.612
243
+ - type: mrr_at_1
244
+ value: 42.918
245
+ - type: mrr_at_10
246
+ value: 52.806
247
+ - type: mrr_at_100
248
+ value: 53.564
249
+ - type: mrr_at_1000
250
+ value: 53.596999999999994
251
+ - type: mrr_at_3
252
+ value: 50.453
253
+ - type: mrr_at_5
254
+ value: 51.841
255
+ - type: ndcg_at_1
256
+ value: 42.918
257
+ - type: ndcg_at_10
258
+ value: 53.291999999999994
259
+ - type: ndcg_at_100
260
+ value: 58.711999999999996
261
+ - type: ndcg_at_1000
262
+ value: 60.317
263
+ - type: ndcg_at_3
264
+ value: 48.855
265
+ - type: ndcg_at_5
266
+ value: 50.778
267
+ - type: precision_at_1
268
+ value: 42.918
269
+ - type: precision_at_10
270
+ value: 9.927999999999999
271
+ - type: precision_at_100
272
+ value: 1.592
273
+ - type: precision_at_1000
274
+ value: 0.201
275
+ - type: precision_at_3
276
+ value: 23.366999999999997
277
+ - type: precision_at_5
278
+ value: 16.366
279
+ - type: recall_at_1
280
+ value: 35.612
281
+ - type: recall_at_10
282
+ value: 64.671
283
+ - type: recall_at_100
284
+ value: 86.97
285
+ - type: recall_at_1000
286
+ value: 96.99600000000001
287
+ - type: recall_at_3
288
+ value: 51.37199999999999
289
+ - type: recall_at_5
290
+ value: 57.094
291
+ - task:
292
+ type: Retrieval
293
+ dataset:
294
+ type: mteb/cqadupstack-english
295
+ name: MTEB CQADupstackEnglishRetrieval
296
+ config: default
297
+ split: test
298
+ revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
299
+ metrics:
300
+ - type: map_at_1
301
+ value: 33.742
302
+ - type: map_at_10
303
+ value: 44.49
304
+ - type: map_at_100
305
+ value: 45.781
306
+ - type: map_at_1000
307
+ value: 45.902
308
+ - type: map_at_3
309
+ value: 41.453
310
+ - type: map_at_5
311
+ value: 43.251
312
+ - type: mrr_at_1
313
+ value: 42.357
314
+ - type: mrr_at_10
315
+ value: 50.463
316
+ - type: mrr_at_100
317
+ value: 51.17
318
+ - type: mrr_at_1000
319
+ value: 51.205999999999996
320
+ - type: mrr_at_3
321
+ value: 48.397
322
+ - type: mrr_at_5
323
+ value: 49.649
324
+ - type: ndcg_at_1
325
+ value: 42.357
326
+ - type: ndcg_at_10
327
+ value: 50.175000000000004
328
+ - type: ndcg_at_100
329
+ value: 54.491
330
+ - type: ndcg_at_1000
331
+ value: 56.282
332
+ - type: ndcg_at_3
333
+ value: 46.159
334
+ - type: ndcg_at_5
335
+ value: 48.226
336
+ - type: precision_at_1
337
+ value: 42.357
338
+ - type: precision_at_10
339
+ value: 9.382
340
+ - type: precision_at_100
341
+ value: 1.473
342
+ - type: precision_at_1000
343
+ value: 0.191
344
+ - type: precision_at_3
345
+ value: 22.187
346
+ - type: precision_at_5
347
+ value: 15.758
348
+ - type: recall_at_1
349
+ value: 33.742
350
+ - type: recall_at_10
351
+ value: 59.760999999999996
352
+ - type: recall_at_100
353
+ value: 77.89500000000001
354
+ - type: recall_at_1000
355
+ value: 89.005
356
+ - type: recall_at_3
357
+ value: 47.872
358
+ - type: recall_at_5
359
+ value: 53.559
360
+ - task:
361
+ type: Retrieval
362
+ dataset:
363
+ type: mteb/cqadupstack-gaming
364
+ name: MTEB CQADupstackGamingRetrieval
365
+ config: default
366
+ split: test
367
+ revision: 4885aa143210c98657558c04aaf3dc47cfb54340
368
+ metrics:
369
+ - type: map_at_1
370
+ value: 43.883
371
+ - type: map_at_10
372
+ value: 56.464999999999996
373
+ - type: map_at_100
374
+ value: 57.394
375
+ - type: map_at_1000
376
+ value: 57.443999999999996
377
+ - type: map_at_3
378
+ value: 53.169
379
+ - type: map_at_5
380
+ value: 54.984
381
+ - type: mrr_at_1
382
+ value: 50.470000000000006
383
+ - type: mrr_at_10
384
+ value: 59.997
385
+ - type: mrr_at_100
386
+ value: 60.586
387
+ - type: mrr_at_1000
388
+ value: 60.61
389
+ - type: mrr_at_3
390
+ value: 57.837
391
+ - type: mrr_at_5
392
+ value: 59.019
393
+ - type: ndcg_at_1
394
+ value: 50.470000000000006
395
+ - type: ndcg_at_10
396
+ value: 62.134
397
+ - type: ndcg_at_100
398
+ value: 65.69500000000001
399
+ - type: ndcg_at_1000
400
+ value: 66.674
401
+ - type: ndcg_at_3
402
+ value: 56.916999999999994
403
+ - type: ndcg_at_5
404
+ value: 59.312
405
+ - type: precision_at_1
406
+ value: 50.470000000000006
407
+ - type: precision_at_10
408
+ value: 9.812
409
+ - type: precision_at_100
410
+ value: 1.25
411
+ - type: precision_at_1000
412
+ value: 0.13699999999999998
413
+ - type: precision_at_3
414
+ value: 25.119999999999997
415
+ - type: precision_at_5
416
+ value: 17.016000000000002
417
+ - type: recall_at_1
418
+ value: 43.883
419
+ - type: recall_at_10
420
+ value: 75.417
421
+ - type: recall_at_100
422
+ value: 90.545
423
+ - type: recall_at_1000
424
+ value: 97.44500000000001
425
+ - type: recall_at_3
426
+ value: 61.306000000000004
427
+ - type: recall_at_5
428
+ value: 67.244
429
+ - task:
430
+ type: Retrieval
431
+ dataset:
432
+ type: mteb/cqadupstack-gis
433
+ name: MTEB CQADupstackGisRetrieval
434
+ config: default
435
+ split: test
436
+ revision: 5003b3064772da1887988e05400cf3806fe491f2
437
+ metrics:
438
+ - type: map_at_1
439
+ value: 29.813000000000002
440
+ - type: map_at_10
441
+ value: 38.627
442
+ - type: map_at_100
443
+ value: 39.735
444
+ - type: map_at_1000
445
+ value: 39.806000000000004
446
+ - type: map_at_3
447
+ value: 36.283
448
+ - type: map_at_5
449
+ value: 37.491
450
+ - type: mrr_at_1
451
+ value: 32.316
452
+ - type: mrr_at_10
453
+ value: 40.752
454
+ - type: mrr_at_100
455
+ value: 41.699000000000005
456
+ - type: mrr_at_1000
457
+ value: 41.749
458
+ - type: mrr_at_3
459
+ value: 38.531
460
+ - type: mrr_at_5
461
+ value: 39.706
462
+ - type: ndcg_at_1
463
+ value: 32.316
464
+ - type: ndcg_at_10
465
+ value: 43.524
466
+ - type: ndcg_at_100
467
+ value: 48.648
468
+ - type: ndcg_at_1000
469
+ value: 50.405
470
+ - type: ndcg_at_3
471
+ value: 38.928000000000004
472
+ - type: ndcg_at_5
473
+ value: 40.967
474
+ - type: precision_at_1
475
+ value: 32.316
476
+ - type: precision_at_10
477
+ value: 6.451999999999999
478
+ - type: precision_at_100
479
+ value: 0.9490000000000001
480
+ - type: precision_at_1000
481
+ value: 0.11299999999999999
482
+ - type: precision_at_3
483
+ value: 16.384
484
+ - type: precision_at_5
485
+ value: 11.006
486
+ - type: recall_at_1
487
+ value: 29.813000000000002
488
+ - type: recall_at_10
489
+ value: 56.562999999999995
490
+ - type: recall_at_100
491
+ value: 79.452
492
+ - type: recall_at_1000
493
+ value: 92.715
494
+ - type: recall_at_3
495
+ value: 43.985
496
+ - type: recall_at_5
497
+ value: 49.001
498
+ - task:
499
+ type: Retrieval
500
+ dataset:
501
+ type: mteb/cqadupstack-mathematica
502
+ name: MTEB CQADupstackMathematicaRetrieval
503
+ config: default
504
+ split: test
505
+ revision: 90fceea13679c63fe563ded68f3b6f06e50061de
506
+ metrics:
507
+ - type: map_at_1
508
+ value: 19.961000000000002
509
+ - type: map_at_10
510
+ value: 28.026
511
+ - type: map_at_100
512
+ value: 29.212
513
+ - type: map_at_1000
514
+ value: 29.332
515
+ - type: map_at_3
516
+ value: 25.296999999999997
517
+ - type: map_at_5
518
+ value: 26.832
519
+ - type: mrr_at_1
520
+ value: 24.627
521
+ - type: mrr_at_10
522
+ value: 33.045
523
+ - type: mrr_at_100
524
+ value: 33.944
525
+ - type: mrr_at_1000
526
+ value: 34.013
527
+ - type: mrr_at_3
528
+ value: 30.307000000000002
529
+ - type: mrr_at_5
530
+ value: 31.874000000000002
531
+ - type: ndcg_at_1
532
+ value: 24.627
533
+ - type: ndcg_at_10
534
+ value: 33.414
535
+ - type: ndcg_at_100
536
+ value: 39.061
537
+ - type: ndcg_at_1000
538
+ value: 41.795
539
+ - type: ndcg_at_3
540
+ value: 28.377000000000002
541
+ - type: ndcg_at_5
542
+ value: 30.781999999999996
543
+ - type: precision_at_1
544
+ value: 24.627
545
+ - type: precision_at_10
546
+ value: 6.02
547
+ - type: precision_at_100
548
+ value: 1.035
549
+ - type: precision_at_1000
550
+ value: 0.13899999999999998
551
+ - type: precision_at_3
552
+ value: 13.516
553
+ - type: precision_at_5
554
+ value: 9.851
555
+ - type: recall_at_1
556
+ value: 19.961000000000002
557
+ - type: recall_at_10
558
+ value: 45.174
559
+ - type: recall_at_100
560
+ value: 69.69
561
+ - type: recall_at_1000
562
+ value: 89.24600000000001
563
+ - type: recall_at_3
564
+ value: 31.062
565
+ - type: recall_at_5
566
+ value: 37.193
567
+ - task:
568
+ type: Retrieval
569
+ dataset:
570
+ type: mteb/cqadupstack-physics
571
+ name: MTEB CQADupstackPhysicsRetrieval
572
+ config: default
573
+ split: test
574
+ revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
575
+ metrics:
576
+ - type: map_at_1
577
+ value: 32.080999999999996
578
+ - type: map_at_10
579
+ value: 42.177
580
+ - type: map_at_100
581
+ value: 43.431999999999995
582
+ - type: map_at_1000
583
+ value: 43.533
584
+ - type: map_at_3
585
+ value: 38.721
586
+ - type: map_at_5
587
+ value: 40.669
588
+ - type: mrr_at_1
589
+ value: 38.787
590
+ - type: mrr_at_10
591
+ value: 47.762
592
+ - type: mrr_at_100
593
+ value: 48.541000000000004
594
+ - type: mrr_at_1000
595
+ value: 48.581
596
+ - type: mrr_at_3
597
+ value: 45.123999999999995
598
+ - type: mrr_at_5
599
+ value: 46.639
600
+ - type: ndcg_at_1
601
+ value: 38.787
602
+ - type: ndcg_at_10
603
+ value: 48.094
604
+ - type: ndcg_at_100
605
+ value: 53.291
606
+ - type: ndcg_at_1000
607
+ value: 55.21
608
+ - type: ndcg_at_3
609
+ value: 42.721
610
+ - type: ndcg_at_5
611
+ value: 45.301
612
+ - type: precision_at_1
613
+ value: 38.787
614
+ - type: precision_at_10
615
+ value: 8.576
616
+ - type: precision_at_100
617
+ value: 1.306
618
+ - type: precision_at_1000
619
+ value: 0.164
620
+ - type: precision_at_3
621
+ value: 19.698
622
+ - type: precision_at_5
623
+ value: 14.013
624
+ - type: recall_at_1
625
+ value: 32.080999999999996
626
+ - type: recall_at_10
627
+ value: 59.948
628
+ - type: recall_at_100
629
+ value: 81.811
630
+ - type: recall_at_1000
631
+ value: 94.544
632
+ - type: recall_at_3
633
+ value: 44.903999999999996
634
+ - type: recall_at_5
635
+ value: 51.763999999999996
636
+ - task:
637
+ type: Retrieval
638
+ dataset:
639
+ type: mteb/cqadupstack-programmers
640
+ name: MTEB CQADupstackProgrammersRetrieval
641
+ config: default
642
+ split: test
643
+ revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
644
+ metrics:
645
+ - type: map_at_1
646
+ value: 28.869
647
+ - type: map_at_10
648
+ value: 38.954
649
+ - type: map_at_100
650
+ value: 40.233000000000004
651
+ - type: map_at_1000
652
+ value: 40.332
653
+ - type: map_at_3
654
+ value: 35.585
655
+ - type: map_at_5
656
+ value: 37.476
657
+ - type: mrr_at_1
658
+ value: 35.959
659
+ - type: mrr_at_10
660
+ value: 44.800000000000004
661
+ - type: mrr_at_100
662
+ value: 45.609
663
+ - type: mrr_at_1000
664
+ value: 45.655
665
+ - type: mrr_at_3
666
+ value: 42.333
667
+ - type: mrr_at_5
668
+ value: 43.68
669
+ - type: ndcg_at_1
670
+ value: 35.959
671
+ - type: ndcg_at_10
672
+ value: 44.957
673
+ - type: ndcg_at_100
674
+ value: 50.275000000000006
675
+ - type: ndcg_at_1000
676
+ value: 52.29899999999999
677
+ - type: ndcg_at_3
678
+ value: 39.797
679
+ - type: ndcg_at_5
680
+ value: 42.128
681
+ - type: precision_at_1
682
+ value: 35.959
683
+ - type: precision_at_10
684
+ value: 8.185
685
+ - type: precision_at_100
686
+ value: 1.261
687
+ - type: precision_at_1000
688
+ value: 0.159
689
+ - type: precision_at_3
690
+ value: 18.988
691
+ - type: precision_at_5
692
+ value: 13.516
693
+ - type: recall_at_1
694
+ value: 28.869
695
+ - type: recall_at_10
696
+ value: 57.154
697
+ - type: recall_at_100
698
+ value: 79.764
699
+ - type: recall_at_1000
700
+ value: 93.515
701
+ - type: recall_at_3
702
+ value: 42.364000000000004
703
+ - type: recall_at_5
704
+ value: 48.756
705
+ - task:
706
+ type: Retrieval
707
+ dataset:
708
+ type: mteb/cqadupstack
709
+ name: MTEB CQADupstackRetrieval
710
+ config: default
711
+ split: test
712
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
713
+ metrics:
714
+ - type: map_at_1
715
+ value: 29.31008333333333
716
+ - type: map_at_10
717
+ value: 38.81849999999999
718
+ - type: map_at_100
719
+ value: 40.05058333333334
720
+ - type: map_at_1000
721
+ value: 40.16116666666667
722
+ - type: map_at_3
723
+ value: 35.91441666666667
724
+ - type: map_at_5
725
+ value: 37.526583333333335
726
+ - type: mrr_at_1
727
+ value: 34.60066666666667
728
+ - type: mrr_at_10
729
+ value: 43.08858333333333
730
+ - type: mrr_at_100
731
+ value: 43.927749999999996
732
+ - type: mrr_at_1000
733
+ value: 43.97866666666667
734
+ - type: mrr_at_3
735
+ value: 40.72775
736
+ - type: mrr_at_5
737
+ value: 42.067249999999994
738
+ - type: ndcg_at_1
739
+ value: 34.60066666666667
740
+ - type: ndcg_at_10
741
+ value: 44.20841666666667
742
+ - type: ndcg_at_100
743
+ value: 49.32866666666667
744
+ - type: ndcg_at_1000
745
+ value: 51.373999999999995
746
+ - type: ndcg_at_3
747
+ value: 39.452083333333334
748
+ - type: ndcg_at_5
749
+ value: 41.67
750
+ - type: precision_at_1
751
+ value: 34.60066666666667
752
+ - type: precision_at_10
753
+ value: 7.616583333333334
754
+ - type: precision_at_100
755
+ value: 1.20175
756
+ - type: precision_at_1000
757
+ value: 0.156
758
+ - type: precision_at_3
759
+ value: 17.992
760
+ - type: precision_at_5
761
+ value: 12.658416666666666
762
+ - type: recall_at_1
763
+ value: 29.31008333333333
764
+ - type: recall_at_10
765
+ value: 55.81900000000001
766
+ - type: recall_at_100
767
+ value: 78.06308333333334
768
+ - type: recall_at_1000
769
+ value: 92.10641666666668
770
+ - type: recall_at_3
771
+ value: 42.50166666666667
772
+ - type: recall_at_5
773
+ value: 48.26108333333333
774
+ - task:
775
+ type: Retrieval
776
+ dataset:
777
+ type: mteb/cqadupstack-stats
778
+ name: MTEB CQADupstackStatsRetrieval
779
+ config: default
780
+ split: test
781
+ revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
782
+ metrics:
783
+ - type: map_at_1
784
+ value: 26.773000000000003
785
+ - type: map_at_10
786
+ value: 34.13
787
+ - type: map_at_100
788
+ value: 35.113
789
+ - type: map_at_1000
790
+ value: 35.211
791
+ - type: map_at_3
792
+ value: 31.958
793
+ - type: map_at_5
794
+ value: 33.080999999999996
795
+ - type: mrr_at_1
796
+ value: 30.061
797
+ - type: mrr_at_10
798
+ value: 37.061
799
+ - type: mrr_at_100
800
+ value: 37.865
801
+ - type: mrr_at_1000
802
+ value: 37.939
803
+ - type: mrr_at_3
804
+ value: 34.995
805
+ - type: mrr_at_5
806
+ value: 36.092
807
+ - type: ndcg_at_1
808
+ value: 30.061
809
+ - type: ndcg_at_10
810
+ value: 38.391999999999996
811
+ - type: ndcg_at_100
812
+ value: 43.13
813
+ - type: ndcg_at_1000
814
+ value: 45.449
815
+ - type: ndcg_at_3
816
+ value: 34.411
817
+ - type: ndcg_at_5
818
+ value: 36.163000000000004
819
+ - type: precision_at_1
820
+ value: 30.061
821
+ - type: precision_at_10
822
+ value: 5.982
823
+ - type: precision_at_100
824
+ value: 0.911
825
+ - type: precision_at_1000
826
+ value: 0.11800000000000001
827
+ - type: precision_at_3
828
+ value: 14.673
829
+ - type: precision_at_5
830
+ value: 10.030999999999999
831
+ - type: recall_at_1
832
+ value: 26.773000000000003
833
+ - type: recall_at_10
834
+ value: 48.445
835
+ - type: recall_at_100
836
+ value: 69.741
837
+ - type: recall_at_1000
838
+ value: 86.59
839
+ - type: recall_at_3
840
+ value: 37.576
841
+ - type: recall_at_5
842
+ value: 41.948
843
+ - task:
844
+ type: Retrieval
845
+ dataset:
846
+ type: mteb/cqadupstack-tex
847
+ name: MTEB CQADupstackTexRetrieval
848
+ config: default
849
+ split: test
850
+ revision: 46989137a86843e03a6195de44b09deda022eec7
851
+ metrics:
852
+ - type: map_at_1
853
+ value: 18.556
854
+ - type: map_at_10
855
+ value: 26.340999999999998
856
+ - type: map_at_100
857
+ value: 27.560000000000002
858
+ - type: map_at_1000
859
+ value: 27.685
860
+ - type: map_at_3
861
+ value: 24.136
862
+ - type: map_at_5
863
+ value: 25.34
864
+ - type: mrr_at_1
865
+ value: 22.368
866
+ - type: mrr_at_10
867
+ value: 30.192999999999998
868
+ - type: mrr_at_100
869
+ value: 31.183
870
+ - type: mrr_at_1000
871
+ value: 31.258000000000003
872
+ - type: mrr_at_3
873
+ value: 28.223
874
+ - type: mrr_at_5
875
+ value: 29.294999999999998
876
+ - type: ndcg_at_1
877
+ value: 22.368
878
+ - type: ndcg_at_10
879
+ value: 31.029
880
+ - type: ndcg_at_100
881
+ value: 36.768
882
+ - type: ndcg_at_1000
883
+ value: 39.572
884
+ - type: ndcg_at_3
885
+ value: 27.197
886
+ - type: ndcg_at_5
887
+ value: 28.912
888
+ - type: precision_at_1
889
+ value: 22.368
890
+ - type: precision_at_10
891
+ value: 5.606
892
+ - type: precision_at_100
893
+ value: 0.9979999999999999
894
+ - type: precision_at_1000
895
+ value: 0.14100000000000001
896
+ - type: precision_at_3
897
+ value: 12.892999999999999
898
+ - type: precision_at_5
899
+ value: 9.16
900
+ - type: recall_at_1
901
+ value: 18.556
902
+ - type: recall_at_10
903
+ value: 41.087
904
+ - type: recall_at_100
905
+ value: 66.92
906
+ - type: recall_at_1000
907
+ value: 86.691
908
+ - type: recall_at_3
909
+ value: 30.415
910
+ - type: recall_at_5
911
+ value: 34.813
912
+ - task:
913
+ type: Retrieval
914
+ dataset:
915
+ type: mteb/cqadupstack-unix
916
+ name: MTEB CQADupstackUnixRetrieval
917
+ config: default
918
+ split: test
919
+ revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
920
+ metrics:
921
+ - type: map_at_1
922
+ value: 29.953999999999997
923
+ - type: map_at_10
924
+ value: 39.633
925
+ - type: map_at_100
926
+ value: 40.923
927
+ - type: map_at_1000
928
+ value: 41.016000000000005
929
+ - type: map_at_3
930
+ value: 36.609
931
+ - type: map_at_5
932
+ value: 38.443
933
+ - type: mrr_at_1
934
+ value: 35.354
935
+ - type: mrr_at_10
936
+ value: 43.718
937
+ - type: mrr_at_100
938
+ value: 44.651999999999994
939
+ - type: mrr_at_1000
940
+ value: 44.696000000000005
941
+ - type: mrr_at_3
942
+ value: 41.154
943
+ - type: mrr_at_5
944
+ value: 42.730000000000004
945
+ - type: ndcg_at_1
946
+ value: 35.354
947
+ - type: ndcg_at_10
948
+ value: 44.933
949
+ - type: ndcg_at_100
950
+ value: 50.577000000000005
951
+ - type: ndcg_at_1000
952
+ value: 52.428
953
+ - type: ndcg_at_3
954
+ value: 39.833
955
+ - type: ndcg_at_5
956
+ value: 42.465
957
+ - type: precision_at_1
958
+ value: 35.354
959
+ - type: precision_at_10
960
+ value: 7.416
961
+ - type: precision_at_100
962
+ value: 1.157
963
+ - type: precision_at_1000
964
+ value: 0.14100000000000001
965
+ - type: precision_at_3
966
+ value: 17.817
967
+ - type: precision_at_5
968
+ value: 12.687000000000001
969
+ - type: recall_at_1
970
+ value: 29.953999999999997
971
+ - type: recall_at_10
972
+ value: 56.932
973
+ - type: recall_at_100
974
+ value: 80.93900000000001
975
+ - type: recall_at_1000
976
+ value: 93.582
977
+ - type: recall_at_3
978
+ value: 43.192
979
+ - type: recall_at_5
980
+ value: 49.757
981
+ - task:
982
+ type: Retrieval
983
+ dataset:
984
+ type: mteb/cqadupstack-webmasters
985
+ name: MTEB CQADupstackWebmastersRetrieval
986
+ config: default
987
+ split: test
988
+ revision: 160c094312a0e1facb97e55eeddb698c0abe3571
989
+ metrics:
990
+ - type: map_at_1
991
+ value: 27.85
992
+ - type: map_at_10
993
+ value: 37.68
994
+ - type: map_at_100
995
+ value: 39.295
996
+ - type: map_at_1000
997
+ value: 39.527
998
+ - type: map_at_3
999
+ value: 35.036
1000
+ - type: map_at_5
1001
+ value: 36.269
1002
+ - type: mrr_at_1
1003
+ value: 33.004
1004
+ - type: mrr_at_10
1005
+ value: 42.096000000000004
1006
+ - type: mrr_at_100
1007
+ value: 43.019
1008
+ - type: mrr_at_1000
1009
+ value: 43.071
1010
+ - type: mrr_at_3
1011
+ value: 39.987
1012
+ - type: mrr_at_5
1013
+ value: 40.995
1014
+ - type: ndcg_at_1
1015
+ value: 33.004
1016
+ - type: ndcg_at_10
1017
+ value: 43.461
1018
+ - type: ndcg_at_100
1019
+ value: 49.138
1020
+ - type: ndcg_at_1000
1021
+ value: 51.50900000000001
1022
+ - type: ndcg_at_3
1023
+ value: 39.317
1024
+ - type: ndcg_at_5
1025
+ value: 40.760999999999996
1026
+ - type: precision_at_1
1027
+ value: 33.004
1028
+ - type: precision_at_10
1029
+ value: 8.161999999999999
1030
+ - type: precision_at_100
1031
+ value: 1.583
1032
+ - type: precision_at_1000
1033
+ value: 0.245
1034
+ - type: precision_at_3
1035
+ value: 18.445
1036
+ - type: precision_at_5
1037
+ value: 12.885
1038
+ - type: recall_at_1
1039
+ value: 27.85
1040
+ - type: recall_at_10
1041
+ value: 54.419
1042
+ - type: recall_at_100
1043
+ value: 79.742
1044
+ - type: recall_at_1000
1045
+ value: 93.97
1046
+ - type: recall_at_3
1047
+ value: 42.149
1048
+ - type: recall_at_5
1049
+ value: 46.165
1050
+ - task:
1051
+ type: Retrieval
1052
+ dataset:
1053
+ type: mteb/cqadupstack-wordpress
1054
+ name: MTEB CQADupstackWordpressRetrieval
1055
+ config: default
1056
+ split: test
1057
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
1058
+ metrics:
1059
+ - type: map_at_1
1060
+ value: 24.627
1061
+ - type: map_at_10
1062
+ value: 32.182
1063
+ - type: map_at_100
1064
+ value: 33.217999999999996
1065
+ - type: map_at_1000
1066
+ value: 33.32
1067
+ - type: map_at_3
1068
+ value: 28.866999999999997
1069
+ - type: map_at_5
1070
+ value: 30.871
1071
+ - type: mrr_at_1
1072
+ value: 26.987
1073
+ - type: mrr_at_10
1074
+ value: 34.37
1075
+ - type: mrr_at_100
1076
+ value: 35.301
1077
+ - type: mrr_at_1000
1078
+ value: 35.369
1079
+ - type: mrr_at_3
1080
+ value: 31.391999999999996
1081
+ - type: mrr_at_5
1082
+ value: 33.287
1083
+ - type: ndcg_at_1
1084
+ value: 26.987
1085
+ - type: ndcg_at_10
1086
+ value: 37.096000000000004
1087
+ - type: ndcg_at_100
1088
+ value: 42.158
1089
+ - type: ndcg_at_1000
1090
+ value: 44.548
1091
+ - type: ndcg_at_3
1092
+ value: 30.913
1093
+ - type: ndcg_at_5
1094
+ value: 34.245
1095
+ - type: precision_at_1
1096
+ value: 26.987
1097
+ - type: precision_at_10
1098
+ value: 5.878
1099
+ - type: precision_at_100
1100
+ value: 0.906
1101
+ - type: precision_at_1000
1102
+ value: 0.123
1103
+ - type: precision_at_3
1104
+ value: 12.815999999999999
1105
+ - type: precision_at_5
1106
+ value: 9.612
1107
+ - type: recall_at_1
1108
+ value: 24.627
1109
+ - type: recall_at_10
1110
+ value: 50.257
1111
+ - type: recall_at_100
1112
+ value: 73.288
1113
+ - type: recall_at_1000
1114
+ value: 90.97800000000001
1115
+ - type: recall_at_3
1116
+ value: 33.823
1117
+ - type: recall_at_5
1118
+ value: 41.839
1119
+ - task:
1120
+ type: Retrieval
1121
+ dataset:
1122
+ type: mteb/climate-fever
1123
+ name: MTEB ClimateFEVER
1124
+ config: default
1125
+ split: test
1126
+ revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
1127
+ metrics:
1128
+ - type: map_at_1
1129
+ value: 17.343
1130
+ - type: map_at_10
1131
+ value: 28.59
1132
+ - type: map_at_100
1133
+ value: 30.591
1134
+ - type: map_at_1000
1135
+ value: 30.759999999999998
1136
+ - type: map_at_3
1137
+ value: 24.197
1138
+ - type: map_at_5
1139
+ value: 26.433
1140
+ - type: mrr_at_1
1141
+ value: 39.609
1142
+ - type: mrr_at_10
1143
+ value: 51.107
1144
+ - type: mrr_at_100
1145
+ value: 51.87199999999999
1146
+ - type: mrr_at_1000
1147
+ value: 51.894
1148
+ - type: mrr_at_3
1149
+ value: 48.154
1150
+ - type: mrr_at_5
1151
+ value: 49.939
1152
+ - type: ndcg_at_1
1153
+ value: 39.609
1154
+ - type: ndcg_at_10
1155
+ value: 38.329
1156
+ - type: ndcg_at_100
1157
+ value: 45.573
1158
+ - type: ndcg_at_1000
1159
+ value: 48.405
1160
+ - type: ndcg_at_3
1161
+ value: 32.506
1162
+ - type: ndcg_at_5
1163
+ value: 34.331
1164
+ - type: precision_at_1
1165
+ value: 39.609
1166
+ - type: precision_at_10
1167
+ value: 11.668000000000001
1168
+ - type: precision_at_100
1169
+ value: 1.9539999999999997
1170
+ - type: precision_at_1000
1171
+ value: 0.249
1172
+ - type: precision_at_3
1173
+ value: 23.952
1174
+ - type: precision_at_5
1175
+ value: 17.902
1176
+ - type: recall_at_1
1177
+ value: 17.343
1178
+ - type: recall_at_10
1179
+ value: 43.704
1180
+ - type: recall_at_100
1181
+ value: 68.363
1182
+ - type: recall_at_1000
1183
+ value: 84.04599999999999
1184
+ - type: recall_at_3
1185
+ value: 29.028
1186
+ - type: recall_at_5
1187
+ value: 35.022
1188
+ - task:
1189
+ type: Retrieval
1190
+ dataset:
1191
+ type: mteb/dbpedia
1192
+ name: MTEB DBPedia
1193
+ config: default
1194
+ split: test
1195
+ revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
1196
+ metrics:
1197
+ - type: map_at_1
1198
+ value: 9.934999999999999
1199
+ - type: map_at_10
1200
+ value: 22.081
1201
+ - type: map_at_100
1202
+ value: 32.036
1203
+ - type: map_at_1000
1204
+ value: 33.803
1205
+ - type: map_at_3
1206
+ value: 15.687999999999999
1207
+ - type: map_at_5
1208
+ value: 18.357
1209
+ - type: mrr_at_1
1210
+ value: 70.75
1211
+ - type: mrr_at_10
1212
+ value: 78.506
1213
+ - type: mrr_at_100
1214
+ value: 78.874
1215
+ - type: mrr_at_1000
1216
+ value: 78.88300000000001
1217
+ - type: mrr_at_3
1218
+ value: 77.667
1219
+ - type: mrr_at_5
1220
+ value: 78.342
1221
+ - type: ndcg_at_1
1222
+ value: 57.25
1223
+ - type: ndcg_at_10
1224
+ value: 45.286
1225
+ - type: ndcg_at_100
1226
+ value: 50.791
1227
+ - type: ndcg_at_1000
1228
+ value: 58.021
1229
+ - type: ndcg_at_3
1230
+ value: 49.504
1231
+ - type: ndcg_at_5
1232
+ value: 47.03
1233
+ - type: precision_at_1
1234
+ value: 70.75
1235
+ - type: precision_at_10
1236
+ value: 36.425000000000004
1237
+ - type: precision_at_100
1238
+ value: 11.953
1239
+ - type: precision_at_1000
1240
+ value: 2.248
1241
+ - type: precision_at_3
1242
+ value: 53.25
1243
+ - type: precision_at_5
1244
+ value: 46.150000000000006
1245
+ - type: recall_at_1
1246
+ value: 9.934999999999999
1247
+ - type: recall_at_10
1248
+ value: 27.592
1249
+ - type: recall_at_100
1250
+ value: 58.089
1251
+ - type: recall_at_1000
1252
+ value: 81.025
1253
+ - type: recall_at_3
1254
+ value: 17.048
1255
+ - type: recall_at_5
1256
+ value: 20.834
1257
+ - task:
1258
+ type: Classification
1259
+ dataset:
1260
+ type: mteb/emotion
1261
+ name: MTEB EmotionClassification
1262
+ config: default
1263
+ split: test
1264
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1265
+ metrics:
1266
+ - type: accuracy
1267
+ value: 47.25999999999999
1268
+ - type: f1
1269
+ value: 43.83371155132253
1270
+ - task:
1271
+ type: Retrieval
1272
+ dataset:
1273
+ type: mteb/fever
1274
+ name: MTEB FEVER
1275
+ config: default
1276
+ split: test
1277
+ revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
1278
+ metrics:
1279
+ - type: map_at_1
1280
+ value: 73.68900000000001
1281
+ - type: map_at_10
1282
+ value: 82.878
1283
+ - type: map_at_100
1284
+ value: 83.084
1285
+ - type: map_at_1000
1286
+ value: 83.097
1287
+ - type: map_at_3
1288
+ value: 81.528
1289
+ - type: map_at_5
1290
+ value: 82.432
1291
+ - type: mrr_at_1
1292
+ value: 79.49300000000001
1293
+ - type: mrr_at_10
1294
+ value: 87.24300000000001
1295
+ - type: mrr_at_100
1296
+ value: 87.3
1297
+ - type: mrr_at_1000
1298
+ value: 87.301
1299
+ - type: mrr_at_3
1300
+ value: 86.359
1301
+ - type: mrr_at_5
1302
+ value: 87.01
1303
+ - type: ndcg_at_1
1304
+ value: 79.49300000000001
1305
+ - type: ndcg_at_10
1306
+ value: 86.894
1307
+ - type: ndcg_at_100
1308
+ value: 87.6
1309
+ - type: ndcg_at_1000
1310
+ value: 87.79299999999999
1311
+ - type: ndcg_at_3
1312
+ value: 84.777
1313
+ - type: ndcg_at_5
1314
+ value: 86.08
1315
+ - type: precision_at_1
1316
+ value: 79.49300000000001
1317
+ - type: precision_at_10
1318
+ value: 10.578
1319
+ - type: precision_at_100
1320
+ value: 1.117
1321
+ - type: precision_at_1000
1322
+ value: 0.11499999999999999
1323
+ - type: precision_at_3
1324
+ value: 32.592999999999996
1325
+ - type: precision_at_5
1326
+ value: 20.423
1327
+ - type: recall_at_1
1328
+ value: 73.68900000000001
1329
+ - type: recall_at_10
1330
+ value: 94.833
1331
+ - type: recall_at_100
1332
+ value: 97.554
1333
+ - type: recall_at_1000
1334
+ value: 98.672
1335
+ - type: recall_at_3
1336
+ value: 89.236
1337
+ - type: recall_at_5
1338
+ value: 92.461
1339
+ - task:
1340
+ type: Retrieval
1341
+ dataset:
1342
+ type: mteb/fiqa
1343
+ name: MTEB FiQA2018
1344
+ config: default
1345
+ split: test
1346
+ revision: 27a168819829fe9bcd655c2df245fb19452e8e06
1347
+ metrics:
1348
+ - type: map_at_1
1349
+ value: 20.59
1350
+ - type: map_at_10
1351
+ value: 34.089000000000006
1352
+ - type: map_at_100
1353
+ value: 35.796
1354
+ - type: map_at_1000
1355
+ value: 35.988
1356
+ - type: map_at_3
1357
+ value: 29.877
1358
+ - type: map_at_5
1359
+ value: 32.202999999999996
1360
+ - type: mrr_at_1
1361
+ value: 41.049
1362
+ - type: mrr_at_10
1363
+ value: 50.370000000000005
1364
+ - type: mrr_at_100
1365
+ value: 51.209
1366
+ - type: mrr_at_1000
1367
+ value: 51.247
1368
+ - type: mrr_at_3
1369
+ value: 48.122
1370
+ - type: mrr_at_5
1371
+ value: 49.326
1372
+ - type: ndcg_at_1
1373
+ value: 41.049
1374
+ - type: ndcg_at_10
1375
+ value: 42.163000000000004
1376
+ - type: ndcg_at_100
1377
+ value: 48.638999999999996
1378
+ - type: ndcg_at_1000
1379
+ value: 51.775000000000006
1380
+ - type: ndcg_at_3
1381
+ value: 38.435
1382
+ - type: ndcg_at_5
1383
+ value: 39.561
1384
+ - type: precision_at_1
1385
+ value: 41.049
1386
+ - type: precision_at_10
1387
+ value: 11.481
1388
+ - type: precision_at_100
1389
+ value: 1.8239999999999998
1390
+ - type: precision_at_1000
1391
+ value: 0.24
1392
+ - type: precision_at_3
1393
+ value: 25.257
1394
+ - type: precision_at_5
1395
+ value: 18.519
1396
+ - type: recall_at_1
1397
+ value: 20.59
1398
+ - type: recall_at_10
1399
+ value: 49.547999999999995
1400
+ - type: recall_at_100
1401
+ value: 73.676
1402
+ - type: recall_at_1000
1403
+ value: 92.269
1404
+ - type: recall_at_3
1405
+ value: 35.656
1406
+ - type: recall_at_5
1407
+ value: 41.455
1408
+ - task:
1409
+ type: Retrieval
1410
+ dataset:
1411
+ type: mteb/hotpotqa
1412
+ name: MTEB HotpotQA
1413
+ config: default
1414
+ split: test
1415
+ revision: ab518f4d6fcca38d87c25209f94beba119d02014
1416
+ metrics:
1417
+ - type: map_at_1
1418
+ value: 39.932
1419
+ - type: map_at_10
1420
+ value: 64.184
1421
+ - type: map_at_100
1422
+ value: 65.06
1423
+ - type: map_at_1000
1424
+ value: 65.109
1425
+ - type: map_at_3
1426
+ value: 60.27
1427
+ - type: map_at_5
1428
+ value: 62.732
1429
+ - type: mrr_at_1
1430
+ value: 79.865
1431
+ - type: mrr_at_10
1432
+ value: 85.99799999999999
1433
+ - type: mrr_at_100
1434
+ value: 86.13
1435
+ - type: mrr_at_1000
1436
+ value: 86.13300000000001
1437
+ - type: mrr_at_3
1438
+ value: 85.136
1439
+ - type: mrr_at_5
1440
+ value: 85.69200000000001
1441
+ - type: ndcg_at_1
1442
+ value: 79.865
1443
+ - type: ndcg_at_10
1444
+ value: 72.756
1445
+ - type: ndcg_at_100
1446
+ value: 75.638
1447
+ - type: ndcg_at_1000
1448
+ value: 76.589
1449
+ - type: ndcg_at_3
1450
+ value: 67.38199999999999
1451
+ - type: ndcg_at_5
1452
+ value: 70.402
1453
+ - type: precision_at_1
1454
+ value: 79.865
1455
+ - type: precision_at_10
1456
+ value: 15.387999999999998
1457
+ - type: precision_at_100
1458
+ value: 1.7610000000000001
1459
+ - type: precision_at_1000
1460
+ value: 0.189
1461
+ - type: precision_at_3
1462
+ value: 43.394
1463
+ - type: precision_at_5
1464
+ value: 28.424
1465
+ - type: recall_at_1
1466
+ value: 39.932
1467
+ - type: recall_at_10
1468
+ value: 76.941
1469
+ - type: recall_at_100
1470
+ value: 88.062
1471
+ - type: recall_at_1000
1472
+ value: 94.396
1473
+ - type: recall_at_3
1474
+ value: 65.091
1475
+ - type: recall_at_5
1476
+ value: 71.06
1477
+ - task:
1478
+ type: Classification
1479
+ dataset:
1480
+ type: mteb/imdb
1481
+ name: MTEB ImdbClassification
1482
+ config: default
1483
+ split: test
1484
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1485
+ metrics:
1486
+ - type: accuracy
1487
+ value: 71.7904
1488
+ - type: ap
1489
+ value: 65.82899456730257
1490
+ - type: f1
1491
+ value: 71.56611877410202
1492
+ - task:
1493
+ type: Retrieval
1494
+ dataset:
1495
+ type: mteb/msmarco
1496
+ name: MTEB MSMARCO
1497
+ config: default
1498
+ split: dev
1499
+ revision: c5a29a104738b98a9e76336939199e264163d4a0
1500
+ metrics:
1501
+ - type: map_at_1
1502
+ value: 21.931
1503
+ - type: map_at_10
1504
+ value: 34.849999999999994
1505
+ - type: map_at_100
1506
+ value: 36.033
1507
+ - type: map_at_1000
1508
+ value: 36.08
1509
+ - type: map_at_3
1510
+ value: 30.842000000000002
1511
+ - type: map_at_5
1512
+ value: 33.229
1513
+ - type: mrr_at_1
1514
+ value: 22.55
1515
+ - type: mrr_at_10
1516
+ value: 35.436
1517
+ - type: mrr_at_100
1518
+ value: 36.563
1519
+ - type: mrr_at_1000
1520
+ value: 36.604
1521
+ - type: mrr_at_3
1522
+ value: 31.507
1523
+ - type: mrr_at_5
1524
+ value: 33.851
1525
+ - type: ndcg_at_1
1526
+ value: 22.55
1527
+ - type: ndcg_at_10
1528
+ value: 41.969
1529
+ - type: ndcg_at_100
1530
+ value: 47.576
1531
+ - type: ndcg_at_1000
1532
+ value: 48.731
1533
+ - type: ndcg_at_3
1534
+ value: 33.894000000000005
1535
+ - type: ndcg_at_5
1536
+ value: 38.133
1537
+ - type: precision_at_1
1538
+ value: 22.55
1539
+ - type: precision_at_10
1540
+ value: 6.660000000000001
1541
+ - type: precision_at_100
1542
+ value: 0.946
1543
+ - type: precision_at_1000
1544
+ value: 0.104
1545
+ - type: precision_at_3
1546
+ value: 14.532
1547
+ - type: precision_at_5
1548
+ value: 10.865
1549
+ - type: recall_at_1
1550
+ value: 21.931
1551
+ - type: recall_at_10
1552
+ value: 63.841
1553
+ - type: recall_at_100
1554
+ value: 89.47699999999999
1555
+ - type: recall_at_1000
1556
+ value: 98.259
1557
+ - type: recall_at_3
1558
+ value: 42.063
1559
+ - type: recall_at_5
1560
+ value: 52.21
1561
+ - task:
1562
+ type: Classification
1563
+ dataset:
1564
+ type: mteb/mtop_domain
1565
+ name: MTEB MTOPDomainClassification (en)
1566
+ config: en
1567
+ split: test
1568
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1569
+ metrics:
1570
+ - type: accuracy
1571
+ value: 93.03921568627452
1572
+ - type: f1
1573
+ value: 92.56400672314416
1574
+ - task:
1575
+ type: Classification
1576
+ dataset:
1577
+ type: mteb/mtop_intent
1578
+ name: MTEB MTOPIntentClassification (en)
1579
+ config: en
1580
+ split: test
1581
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1582
+ metrics:
1583
+ - type: accuracy
1584
+ value: 63.515731874145
1585
+ - type: f1
1586
+ value: 44.922310875523216
1587
+ - task:
1588
+ type: Classification
1589
+ dataset:
1590
+ type: masakhane/masakhanews
1591
+ name: MTEB MasakhaNEWSClassification (eng)
1592
+ config: eng
1593
+ split: test
1594
+ revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
1595
+ metrics:
1596
+ - type: accuracy
1597
+ value: 77.57383966244727
1598
+ - type: f1
1599
+ value: 76.55222378218293
1600
+ - task:
1601
+ type: Clustering
1602
+ dataset:
1603
+ type: masakhane/masakhanews
1604
+ name: MTEB MasakhaNEWSClusteringP2P (eng)
1605
+ config: eng
1606
+ split: test
1607
+ revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
1608
+ metrics:
1609
+ - type: v_measure
1610
+ value: 62.74836240280833
1611
+ - task:
1612
+ type: Clustering
1613
+ dataset:
1614
+ type: masakhane/masakhanews
1615
+ name: MTEB MasakhaNEWSClusteringS2S (eng)
1616
+ config: eng
1617
+ split: test
1618
+ revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
1619
+ metrics:
1620
+ - type: v_measure
1621
+ value: 24.414348715238184
1622
+ - task:
1623
+ type: Classification
1624
+ dataset:
1625
+ type: mteb/amazon_massive_intent
1626
+ name: MTEB MassiveIntentClassification (en)
1627
+ config: en
1628
+ split: test
1629
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1630
+ metrics:
1631
+ - type: accuracy
1632
+ value: 66.54673839946201
1633
+ - type: f1
1634
+ value: 64.61004101532164
1635
+ - task:
1636
+ type: Classification
1637
+ dataset:
1638
+ type: mteb/amazon_massive_scenario
1639
+ name: MTEB MassiveScenarioClassification (en)
1640
+ config: en
1641
+ split: test
1642
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1643
+ metrics:
1644
+ - type: accuracy
1645
+ value: 73.11365164761264
1646
+ - type: f1
1647
+ value: 72.01684013680978
1648
+ - task:
1649
+ type: Clustering
1650
+ dataset:
1651
+ type: mteb/medrxiv-clustering-p2p
1652
+ name: MTEB MedrxivClusteringP2P
1653
+ config: default
1654
+ split: test
1655
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1656
+ metrics:
1657
+ - type: v_measure
1658
+ value: 31.123671999617297
1659
+ - task:
1660
+ type: Clustering
1661
+ dataset:
1662
+ type: mteb/medrxiv-clustering-s2s
1663
+ name: MTEB MedrxivClusteringS2S
1664
+ config: default
1665
+ split: test
1666
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1667
+ metrics:
1668
+ - type: v_measure
1669
+ value: 26.72684341430875
1670
+ - task:
1671
+ type: Reranking
1672
+ dataset:
1673
+ type: mteb/mind_small
1674
+ name: MTEB MindSmallReranking
1675
+ config: default
1676
+ split: test
1677
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1678
+ metrics:
1679
+ - type: map
1680
+ value: 29.910228061734816
1681
+ - type: mrr
1682
+ value: 30.835255982532477
1683
+ - task:
1684
+ type: Retrieval
1685
+ dataset:
1686
+ type: mteb/nfcorpus
1687
+ name: MTEB NFCorpus
1688
+ config: default
1689
+ split: test
1690
+ revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
1691
+ metrics:
1692
+ - type: map_at_1
1693
+ value: 5.6770000000000005
1694
+ - type: map_at_10
1695
+ value: 13.15
1696
+ - type: map_at_100
1697
+ value: 16.205
1698
+ - type: map_at_1000
1699
+ value: 17.580000000000002
1700
+ - type: map_at_3
1701
+ value: 9.651
1702
+ - type: map_at_5
1703
+ value: 11.142000000000001
1704
+ - type: mrr_at_1
1705
+ value: 47.678
1706
+ - type: mrr_at_10
1707
+ value: 56.257000000000005
1708
+ - type: mrr_at_100
1709
+ value: 56.708000000000006
1710
+ - type: mrr_at_1000
1711
+ value: 56.751
1712
+ - type: mrr_at_3
1713
+ value: 54.128
1714
+ - type: mrr_at_5
1715
+ value: 55.181000000000004
1716
+ - type: ndcg_at_1
1717
+ value: 45.511
1718
+ - type: ndcg_at_10
1719
+ value: 35.867
1720
+ - type: ndcg_at_100
1721
+ value: 31.566
1722
+ - type: ndcg_at_1000
1723
+ value: 40.077
1724
+ - type: ndcg_at_3
1725
+ value: 41.9
1726
+ - type: ndcg_at_5
1727
+ value: 39.367999999999995
1728
+ - type: precision_at_1
1729
+ value: 47.678
1730
+ - type: precision_at_10
1731
+ value: 26.842
1732
+ - type: precision_at_100
1733
+ value: 7.991
1734
+ - type: precision_at_1000
1735
+ value: 2.0469999999999997
1736
+ - type: precision_at_3
1737
+ value: 39.938
1738
+ - type: precision_at_5
1739
+ value: 34.613
1740
+ - type: recall_at_1
1741
+ value: 5.6770000000000005
1742
+ - type: recall_at_10
1743
+ value: 17.119999999999997
1744
+ - type: recall_at_100
1745
+ value: 30.828
1746
+ - type: recall_at_1000
1747
+ value: 62.082
1748
+ - type: recall_at_3
1749
+ value: 10.456
1750
+ - type: recall_at_5
1751
+ value: 12.903999999999998
1752
+ - task:
1753
+ type: Retrieval
1754
+ dataset:
1755
+ type: mteb/nq
1756
+ name: MTEB NQ
1757
+ config: default
1758
+ split: test
1759
+ revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
1760
+ metrics:
1761
+ - type: map_at_1
1762
+ value: 39.021
1763
+ - type: map_at_10
1764
+ value: 54.976
1765
+ - type: map_at_100
1766
+ value: 55.793000000000006
1767
+ - type: map_at_1000
1768
+ value: 55.811
1769
+ - type: map_at_3
1770
+ value: 50.759
1771
+ - type: map_at_5
1772
+ value: 53.429
1773
+ - type: mrr_at_1
1774
+ value: 43.308
1775
+ - type: mrr_at_10
1776
+ value: 57.118
1777
+ - type: mrr_at_100
1778
+ value: 57.69499999999999
1779
+ - type: mrr_at_1000
1780
+ value: 57.704
1781
+ - type: mrr_at_3
1782
+ value: 53.848
1783
+ - type: mrr_at_5
1784
+ value: 55.915000000000006
1785
+ - type: ndcg_at_1
1786
+ value: 43.308
1787
+ - type: ndcg_at_10
1788
+ value: 62.33800000000001
1789
+ - type: ndcg_at_100
1790
+ value: 65.61099999999999
1791
+ - type: ndcg_at_1000
1792
+ value: 65.995
1793
+ - type: ndcg_at_3
1794
+ value: 54.723
1795
+ - type: ndcg_at_5
1796
+ value: 59.026
1797
+ - type: precision_at_1
1798
+ value: 43.308
1799
+ - type: precision_at_10
1800
+ value: 9.803
1801
+ - type: precision_at_100
1802
+ value: 1.167
1803
+ - type: precision_at_1000
1804
+ value: 0.121
1805
+ - type: precision_at_3
1806
+ value: 24.334
1807
+ - type: precision_at_5
1808
+ value: 17.144000000000002
1809
+ - type: recall_at_1
1810
+ value: 39.021
1811
+ - type: recall_at_10
1812
+ value: 82.37299999999999
1813
+ - type: recall_at_100
1814
+ value: 96.21499999999999
1815
+ - type: recall_at_1000
1816
+ value: 99.02499999999999
1817
+ - type: recall_at_3
1818
+ value: 63.031000000000006
1819
+ - type: recall_at_5
1820
+ value: 72.856
1821
+ - task:
1822
+ type: Classification
1823
+ dataset:
1824
+ type: ag_news
1825
+ name: MTEB NewsClassification
1826
+ config: default
1827
+ split: test
1828
+ revision: eb185aade064a813bc0b7f42de02595523103ca4
1829
+ metrics:
1830
+ - type: accuracy
1831
+ value: 78.03289473684211
1832
+ - type: f1
1833
+ value: 77.89323745730803
1834
+ - task:
1835
+ type: PairClassification
1836
+ dataset:
1837
+ type: GEM/opusparcus
1838
+ name: MTEB OpusparcusPC (en)
1839
+ config: en
1840
+ split: test
1841
+ revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a
1842
+ metrics:
1843
+ - type: cos_sim_accuracy
1844
+ value: 99.89816700610999
1845
+ - type: cos_sim_ap
1846
+ value: 100.0
1847
+ - type: cos_sim_f1
1848
+ value: 99.9490575649516
1849
+ - type: cos_sim_precision
1850
+ value: 100.0
1851
+ - type: cos_sim_recall
1852
+ value: 99.89816700610999
1853
+ - type: dot_accuracy
1854
+ value: 99.89816700610999
1855
+ - type: dot_ap
1856
+ value: 100.0
1857
+ - type: dot_f1
1858
+ value: 99.9490575649516
1859
+ - type: dot_precision
1860
+ value: 100.0
1861
+ - type: dot_recall
1862
+ value: 99.89816700610999
1863
+ - type: euclidean_accuracy
1864
+ value: 99.89816700610999
1865
+ - type: euclidean_ap
1866
+ value: 100.0
1867
+ - type: euclidean_f1
1868
+ value: 99.9490575649516
1869
+ - type: euclidean_precision
1870
+ value: 100.0
1871
+ - type: euclidean_recall
1872
+ value: 99.89816700610999
1873
+ - type: manhattan_accuracy
1874
+ value: 99.89816700610999
1875
+ - type: manhattan_ap
1876
+ value: 100.0
1877
+ - type: manhattan_f1
1878
+ value: 99.9490575649516
1879
+ - type: manhattan_precision
1880
+ value: 100.0
1881
+ - type: manhattan_recall
1882
+ value: 99.89816700610999
1883
+ - type: max_accuracy
1884
+ value: 99.89816700610999
1885
+ - type: max_ap
1886
+ value: 100.0
1887
+ - type: max_f1
1888
+ value: 99.9490575649516
1889
+ - task:
1890
+ type: PairClassification
1891
+ dataset:
1892
+ type: paws-x
1893
+ name: MTEB PawsX (en)
1894
+ config: en
1895
+ split: test
1896
+ revision: 8a04d940a42cd40658986fdd8e3da561533a3646
1897
+ metrics:
1898
+ - type: cos_sim_accuracy
1899
+ value: 61.75000000000001
1900
+ - type: cos_sim_ap
1901
+ value: 59.578879568280385
1902
+ - type: cos_sim_f1
1903
+ value: 62.50861474844934
1904
+ - type: cos_sim_precision
1905
+ value: 45.46365914786967
1906
+ - type: cos_sim_recall
1907
+ value: 100.0
1908
+ - type: dot_accuracy
1909
+ value: 61.75000000000001
1910
+ - type: dot_ap
1911
+ value: 59.57893088951573
1912
+ - type: dot_f1
1913
+ value: 62.50861474844934
1914
+ - type: dot_precision
1915
+ value: 45.46365914786967
1916
+ - type: dot_recall
1917
+ value: 100.0
1918
+ - type: euclidean_accuracy
1919
+ value: 61.75000000000001
1920
+ - type: euclidean_ap
1921
+ value: 59.578755624671686
1922
+ - type: euclidean_f1
1923
+ value: 62.50861474844934
1924
+ - type: euclidean_precision
1925
+ value: 45.46365914786967
1926
+ - type: euclidean_recall
1927
+ value: 100.0
1928
+ - type: manhattan_accuracy
1929
+ value: 61.75000000000001
1930
+ - type: manhattan_ap
1931
+ value: 59.58504334461159
1932
+ - type: manhattan_f1
1933
+ value: 62.50861474844934
1934
+ - type: manhattan_precision
1935
+ value: 45.46365914786967
1936
+ - type: manhattan_recall
1937
+ value: 100.0
1938
+ - type: max_accuracy
1939
+ value: 61.75000000000001
1940
+ - type: max_ap
1941
+ value: 59.58504334461159
1942
+ - type: max_f1
1943
+ value: 62.50861474844934
1944
+ - task:
1945
+ type: Retrieval
1946
+ dataset:
1947
+ type: mteb/quora
1948
+ name: MTEB QuoraRetrieval
1949
+ config: default
1950
+ split: test
1951
+ revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
1952
+ metrics:
1953
+ - type: map_at_1
1954
+ value: 70.186
1955
+ - type: map_at_10
1956
+ value: 83.875
1957
+ - type: map_at_100
1958
+ value: 84.514
1959
+ - type: map_at_1000
1960
+ value: 84.53500000000001
1961
+ - type: map_at_3
1962
+ value: 80.926
1963
+ - type: map_at_5
1964
+ value: 82.797
1965
+ - type: mrr_at_1
1966
+ value: 80.82000000000001
1967
+ - type: mrr_at_10
1968
+ value: 87.068
1969
+ - type: mrr_at_100
1970
+ value: 87.178
1971
+ - type: mrr_at_1000
1972
+ value: 87.18
1973
+ - type: mrr_at_3
1974
+ value: 86.055
1975
+ - type: mrr_at_5
1976
+ value: 86.763
1977
+ - type: ndcg_at_1
1978
+ value: 80.84
1979
+ - type: ndcg_at_10
1980
+ value: 87.723
1981
+ - type: ndcg_at_100
1982
+ value: 88.98700000000001
1983
+ - type: ndcg_at_1000
1984
+ value: 89.13499999999999
1985
+ - type: ndcg_at_3
1986
+ value: 84.821
1987
+ - type: ndcg_at_5
1988
+ value: 86.441
1989
+ - type: precision_at_1
1990
+ value: 80.84
1991
+ - type: precision_at_10
1992
+ value: 13.270000000000001
1993
+ - type: precision_at_100
1994
+ value: 1.516
1995
+ - type: precision_at_1000
1996
+ value: 0.156
1997
+ - type: precision_at_3
1998
+ value: 37.013
1999
+ - type: precision_at_5
2000
+ value: 24.37
2001
+ - type: recall_at_1
2002
+ value: 70.186
2003
+ - type: recall_at_10
2004
+ value: 94.948
2005
+ - type: recall_at_100
2006
+ value: 99.223
2007
+ - type: recall_at_1000
2008
+ value: 99.932
2009
+ - type: recall_at_3
2010
+ value: 86.57000000000001
2011
+ - type: recall_at_5
2012
+ value: 91.157
2013
+ - task:
2014
+ type: Clustering
2015
+ dataset:
2016
+ type: mteb/reddit-clustering
2017
+ name: MTEB RedditClustering
2018
+ config: default
2019
+ split: test
2020
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
2021
+ metrics:
2022
+ - type: v_measure
2023
+ value: 50.24198927949519
2024
+ - task:
2025
+ type: Clustering
2026
+ dataset:
2027
+ type: mteb/reddit-clustering-p2p
2028
+ name: MTEB RedditClusteringP2P
2029
+ config: default
2030
+ split: test
2031
+ revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
2032
+ metrics:
2033
+ - type: v_measure
2034
+ value: 61.452073078765544
2035
+ - task:
2036
+ type: Retrieval
2037
+ dataset:
2038
+ type: mteb/scidocs
2039
+ name: MTEB SCIDOCS
2040
+ config: default
2041
+ split: test
2042
+ revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
2043
+ metrics:
2044
+ - type: map_at_1
2045
+ value: 4.972
2046
+ - type: map_at_10
2047
+ value: 12.314
2048
+ - type: map_at_100
2049
+ value: 14.333000000000002
2050
+ - type: map_at_1000
2051
+ value: 14.628
2052
+ - type: map_at_3
2053
+ value: 8.972
2054
+ - type: map_at_5
2055
+ value: 10.724
2056
+ - type: mrr_at_1
2057
+ value: 24.4
2058
+ - type: mrr_at_10
2059
+ value: 35.257
2060
+ - type: mrr_at_100
2061
+ value: 36.297000000000004
2062
+ - type: mrr_at_1000
2063
+ value: 36.363
2064
+ - type: mrr_at_3
2065
+ value: 32.267
2066
+ - type: mrr_at_5
2067
+ value: 33.942
2068
+ - type: ndcg_at_1
2069
+ value: 24.4
2070
+ - type: ndcg_at_10
2071
+ value: 20.47
2072
+ - type: ndcg_at_100
2073
+ value: 28.111000000000004
2074
+ - type: ndcg_at_1000
2075
+ value: 33.499
2076
+ - type: ndcg_at_3
2077
+ value: 19.975
2078
+ - type: ndcg_at_5
2079
+ value: 17.293
2080
+ - type: precision_at_1
2081
+ value: 24.4
2082
+ - type: precision_at_10
2083
+ value: 10.440000000000001
2084
+ - type: precision_at_100
2085
+ value: 2.136
2086
+ - type: precision_at_1000
2087
+ value: 0.34299999999999997
2088
+ - type: precision_at_3
2089
+ value: 18.733
2090
+ - type: precision_at_5
2091
+ value: 15.120000000000001
2092
+ - type: recall_at_1
2093
+ value: 4.972
2094
+ - type: recall_at_10
2095
+ value: 21.157
2096
+ - type: recall_at_100
2097
+ value: 43.335
2098
+ - type: recall_at_1000
2099
+ value: 69.652
2100
+ - type: recall_at_3
2101
+ value: 11.417
2102
+ - type: recall_at_5
2103
+ value: 15.317
2104
+ - task:
2105
+ type: STS
2106
+ dataset:
2107
+ type: mteb/sickr-sts
2108
+ name: MTEB SICK-R
2109
+ config: default
2110
+ split: test
2111
+ revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
2112
+ metrics:
2113
+ - type: cos_sim_pearson
2114
+ value: 76.70295978506286
2115
+ - type: cos_sim_spearman
2116
+ value: 70.91162732446628
2117
+ - type: euclidean_pearson
2118
+ value: 73.25693688746031
2119
+ - type: euclidean_spearman
2120
+ value: 70.91162556180127
2121
+ - type: manhattan_pearson
2122
+ value: 73.27735004735767
2123
+ - type: manhattan_spearman
2124
+ value: 70.8856787022704
2125
+ - task:
2126
+ type: STS
2127
+ dataset:
2128
+ type: mteb/sts12-sts
2129
+ name: MTEB STS12
2130
+ config: default
2131
+ split: test
2132
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
2133
+ metrics:
2134
+ - type: cos_sim_pearson
2135
+ value: 67.55878682646774
2136
+ - type: cos_sim_spearman
2137
+ value: 66.10824660353681
2138
+ - type: euclidean_pearson
2139
+ value: 64.93937270068541
2140
+ - type: euclidean_spearman
2141
+ value: 66.10824660353681
2142
+ - type: manhattan_pearson
2143
+ value: 64.96325555978984
2144
+ - type: manhattan_spearman
2145
+ value: 66.12052481638577
2146
+ - task:
2147
+ type: STS
2148
+ dataset:
2149
+ type: mteb/sts13-sts
2150
+ name: MTEB STS13
2151
+ config: default
2152
+ split: test
2153
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
2154
+ metrics:
2155
+ - type: cos_sim_pearson
2156
+ value: 79.79979774019496
2157
+ - type: cos_sim_spearman
2158
+ value: 79.82293444619499
2159
+ - type: euclidean_pearson
2160
+ value: 79.4830436509311
2161
+ - type: euclidean_spearman
2162
+ value: 79.82293444619499
2163
+ - type: manhattan_pearson
2164
+ value: 79.49785594799296
2165
+ - type: manhattan_spearman
2166
+ value: 79.8280390479434
2167
+ - task:
2168
+ type: STS
2169
+ dataset:
2170
+ type: mteb/sts14-sts
2171
+ name: MTEB STS14
2172
+ config: default
2173
+ split: test
2174
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2175
+ metrics:
2176
+ - type: cos_sim_pearson
2177
+ value: 76.36839628231121
2178
+ - type: cos_sim_spearman
2179
+ value: 73.63809739428072
2180
+ - type: euclidean_pearson
2181
+ value: 74.93718121215906
2182
+ - type: euclidean_spearman
2183
+ value: 73.63810227650436
2184
+ - type: manhattan_pearson
2185
+ value: 74.8737197659424
2186
+ - type: manhattan_spearman
2187
+ value: 73.57534688126572
2188
+ - task:
2189
+ type: STS
2190
+ dataset:
2191
+ type: mteb/sts15-sts
2192
+ name: MTEB STS15
2193
+ config: default
2194
+ split: test
2195
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2196
+ metrics:
2197
+ - type: cos_sim_pearson
2198
+ value: 82.67482138157656
2199
+ - type: cos_sim_spearman
2200
+ value: 83.23485786963107
2201
+ - type: euclidean_pearson
2202
+ value: 82.50847772197369
2203
+ - type: euclidean_spearman
2204
+ value: 83.23485786963107
2205
+ - type: manhattan_pearson
2206
+ value: 82.48916218377576
2207
+ - type: manhattan_spearman
2208
+ value: 83.19756483500014
2209
+ - task:
2210
+ type: STS
2211
+ dataset:
2212
+ type: mteb/sts16-sts
2213
+ name: MTEB STS16
2214
+ config: default
2215
+ split: test
2216
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2217
+ metrics:
2218
+ - type: cos_sim_pearson
2219
+ value: 81.11626268793967
2220
+ - type: cos_sim_spearman
2221
+ value: 81.58184691061507
2222
+ - type: euclidean_pearson
2223
+ value: 80.65900869004938
2224
+ - type: euclidean_spearman
2225
+ value: 81.58184691061507
2226
+ - type: manhattan_pearson
2227
+ value: 80.67912306966772
2228
+ - type: manhattan_spearman
2229
+ value: 81.59957593393145
2230
+ - task:
2231
+ type: STS
2232
+ dataset:
2233
+ type: mteb/sts17-crosslingual-sts
2234
+ name: MTEB STS17 (en-en)
2235
+ config: en-en
2236
+ split: test
2237
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2238
+ metrics:
2239
+ - type: cos_sim_pearson
2240
+ value: 80.3140990821409
2241
+ - type: cos_sim_spearman
2242
+ value: 80.59196586367551
2243
+ - type: euclidean_pearson
2244
+ value: 80.73014029317672
2245
+ - type: euclidean_spearman
2246
+ value: 80.59196586367551
2247
+ - type: manhattan_pearson
2248
+ value: 80.5774325136987
2249
+ - type: manhattan_spearman
2250
+ value: 80.35102610546238
2251
+ - task:
2252
+ type: STS
2253
+ dataset:
2254
+ type: mteb/sts22-crosslingual-sts
2255
+ name: MTEB STS22 (en)
2256
+ config: en
2257
+ split: test
2258
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
2259
+ metrics:
2260
+ - type: cos_sim_pearson
2261
+ value: 68.34450491529164
2262
+ - type: cos_sim_spearman
2263
+ value: 68.79451793414492
2264
+ - type: euclidean_pearson
2265
+ value: 68.75619738499324
2266
+ - type: euclidean_spearman
2267
+ value: 68.79451793414492
2268
+ - type: manhattan_pearson
2269
+ value: 68.75256119543882
2270
+ - type: manhattan_spearman
2271
+ value: 68.81836416978547
2272
+ - task:
2273
+ type: STS
2274
+ dataset:
2275
+ type: mteb/stsbenchmark-sts
2276
+ name: MTEB STSBenchmark
2277
+ config: default
2278
+ split: test
2279
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2280
+ metrics:
2281
+ - type: cos_sim_pearson
2282
+ value: 77.95580414975612
2283
+ - type: cos_sim_spearman
2284
+ value: 77.89671867168987
2285
+ - type: euclidean_pearson
2286
+ value: 77.61352097720862
2287
+ - type: euclidean_spearman
2288
+ value: 77.89671867168987
2289
+ - type: manhattan_pearson
2290
+ value: 77.65282228135632
2291
+ - type: manhattan_spearman
2292
+ value: 77.91730533156762
2293
+ - task:
2294
+ type: STS
2295
+ dataset:
2296
+ type: PhilipMay/stsb_multi_mt
2297
+ name: MTEB STSBenchmarkMultilingualSTS (en)
2298
+ config: en
2299
+ split: test
2300
+ revision: 93d57ef91790589e3ce9c365164337a8a78b7632
2301
+ metrics:
2302
+ - type: cos_sim_pearson
2303
+ value: 77.95580421496413
2304
+ - type: cos_sim_spearman
2305
+ value: 77.89671867168987
2306
+ - type: euclidean_pearson
2307
+ value: 77.61352107168794
2308
+ - type: euclidean_spearman
2309
+ value: 77.89671867168987
2310
+ - type: manhattan_pearson
2311
+ value: 77.65282237231794
2312
+ - type: manhattan_spearman
2313
+ value: 77.91730533156762
2314
+ - task:
2315
+ type: Reranking
2316
+ dataset:
2317
+ type: mteb/scidocs-reranking
2318
+ name: MTEB SciDocsRR
2319
+ config: default
2320
+ split: test
2321
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2322
+ metrics:
2323
+ - type: map
2324
+ value: 79.22928110092924
2325
+ - type: mrr
2326
+ value: 94.46700902583257
2327
+ - task:
2328
+ type: Retrieval
2329
+ dataset:
2330
+ type: mteb/scifact
2331
+ name: MTEB SciFact
2332
+ config: default
2333
+ split: test
2334
+ revision: 0228b52cf27578f30900b9e5271d331663a030d7
2335
+ metrics:
2336
+ - type: map_at_1
2337
+ value: 56.011
2338
+ - type: map_at_10
2339
+ value: 65.544
2340
+ - type: map_at_100
2341
+ value: 66.034
2342
+ - type: map_at_1000
2343
+ value: 66.065
2344
+ - type: map_at_3
2345
+ value: 63.077000000000005
2346
+ - type: map_at_5
2347
+ value: 64.354
2348
+ - type: mrr_at_1
2349
+ value: 59.0
2350
+ - type: mrr_at_10
2351
+ value: 66.74900000000001
2352
+ - type: mrr_at_100
2353
+ value: 67.176
2354
+ - type: mrr_at_1000
2355
+ value: 67.203
2356
+ - type: mrr_at_3
2357
+ value: 65.056
2358
+ - type: mrr_at_5
2359
+ value: 65.956
2360
+ - type: ndcg_at_1
2361
+ value: 59.0
2362
+ - type: ndcg_at_10
2363
+ value: 69.95599999999999
2364
+ - type: ndcg_at_100
2365
+ value: 72.27
2366
+ - type: ndcg_at_1000
2367
+ value: 73.066
2368
+ - type: ndcg_at_3
2369
+ value: 65.837
2370
+ - type: ndcg_at_5
2371
+ value: 67.633
2372
+ - type: precision_at_1
2373
+ value: 59.0
2374
+ - type: precision_at_10
2375
+ value: 9.333
2376
+ - type: precision_at_100
2377
+ value: 1.053
2378
+ - type: precision_at_1000
2379
+ value: 0.11199999999999999
2380
+ - type: precision_at_3
2381
+ value: 26.0
2382
+ - type: precision_at_5
2383
+ value: 16.866999999999997
2384
+ - type: recall_at_1
2385
+ value: 56.011
2386
+ - type: recall_at_10
2387
+ value: 82.133
2388
+ - type: recall_at_100
2389
+ value: 92.767
2390
+ - type: recall_at_1000
2391
+ value: 99.0
2392
+ - type: recall_at_3
2393
+ value: 70.95
2394
+ - type: recall_at_5
2395
+ value: 75.556
2396
+ - task:
2397
+ type: PairClassification
2398
+ dataset:
2399
+ type: mteb/sprintduplicatequestions-pairclassification
2400
+ name: MTEB SprintDuplicateQuestions
2401
+ config: default
2402
+ split: test
2403
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2404
+ metrics:
2405
+ - type: cos_sim_accuracy
2406
+ value: 99.81584158415842
2407
+ - type: cos_sim_ap
2408
+ value: 94.67482871230736
2409
+ - type: cos_sim_f1
2410
+ value: 90.67201604814443
2411
+ - type: cos_sim_precision
2412
+ value: 90.94567404426559
2413
+ - type: cos_sim_recall
2414
+ value: 90.4
2415
+ - type: dot_accuracy
2416
+ value: 99.81584158415842
2417
+ - type: dot_ap
2418
+ value: 94.67482871230737
2419
+ - type: dot_f1
2420
+ value: 90.67201604814443
2421
+ - type: dot_precision
2422
+ value: 90.94567404426559
2423
+ - type: dot_recall
2424
+ value: 90.4
2425
+ - type: euclidean_accuracy
2426
+ value: 99.81584158415842
2427
+ - type: euclidean_ap
2428
+ value: 94.67482871230737
2429
+ - type: euclidean_f1
2430
+ value: 90.67201604814443
2431
+ - type: euclidean_precision
2432
+ value: 90.94567404426559
2433
+ - type: euclidean_recall
2434
+ value: 90.4
2435
+ - type: manhattan_accuracy
2436
+ value: 99.81188118811882
2437
+ - type: manhattan_ap
2438
+ value: 94.6409082219286
2439
+ - type: manhattan_f1
2440
+ value: 90.50949050949052
2441
+ - type: manhattan_precision
2442
+ value: 90.41916167664671
2443
+ - type: manhattan_recall
2444
+ value: 90.60000000000001
2445
+ - type: max_accuracy
2446
+ value: 99.81584158415842
2447
+ - type: max_ap
2448
+ value: 94.67482871230737
2449
+ - type: max_f1
2450
+ value: 90.67201604814443
2451
+ - task:
2452
+ type: Clustering
2453
+ dataset:
2454
+ type: mteb/stackexchange-clustering
2455
+ name: MTEB StackExchangeClustering
2456
+ config: default
2457
+ split: test
2458
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2459
+ metrics:
2460
+ - type: v_measure
2461
+ value: 62.63494511649264
2462
+ - task:
2463
+ type: Clustering
2464
+ dataset:
2465
+ type: mteb/stackexchange-clustering-p2p
2466
+ name: MTEB StackExchangeClusteringP2P
2467
+ config: default
2468
+ split: test
2469
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2470
+ metrics:
2471
+ - type: v_measure
2472
+ value: 37.165838327685755
2473
+ - task:
2474
+ type: Reranking
2475
+ dataset:
2476
+ type: mteb/stackoverflowdupquestions-reranking
2477
+ name: MTEB StackOverflowDupQuestions
2478
+ config: default
2479
+ split: test
2480
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2481
+ metrics:
2482
+ - type: map
2483
+ value: 51.384873075208084
2484
+ - type: mrr
2485
+ value: 52.196439181733304
2486
+ - task:
2487
+ type: Summarization
2488
+ dataset:
2489
+ type: mteb/summeval
2490
+ name: MTEB SummEval
2491
+ config: default
2492
+ split: test
2493
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2494
+ metrics:
2495
+ - type: cos_sim_pearson
2496
+ value: 32.13690355567596
2497
+ - type: cos_sim_spearman
2498
+ value: 31.38349778638125
2499
+ - type: dot_pearson
2500
+ value: 32.13689596691593
2501
+ - type: dot_spearman
2502
+ value: 31.38349778638125
2503
+ - task:
2504
+ type: Retrieval
2505
+ dataset:
2506
+ type: mteb/trec-covid
2507
+ name: MTEB TRECCOVID
2508
+ config: default
2509
+ split: test
2510
+ revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
2511
+ metrics:
2512
+ - type: map_at_1
2513
+ value: 0.26
2514
+ - type: map_at_10
2515
+ value: 2.08
2516
+ - type: map_at_100
2517
+ value: 12.598
2518
+ - type: map_at_1000
2519
+ value: 30.119
2520
+ - type: map_at_3
2521
+ value: 0.701
2522
+ - type: map_at_5
2523
+ value: 1.11
2524
+ - type: mrr_at_1
2525
+ value: 96.0
2526
+ - type: mrr_at_10
2527
+ value: 97.167
2528
+ - type: mrr_at_100
2529
+ value: 97.167
2530
+ - type: mrr_at_1000
2531
+ value: 97.167
2532
+ - type: mrr_at_3
2533
+ value: 96.667
2534
+ - type: mrr_at_5
2535
+ value: 97.167
2536
+ - type: ndcg_at_1
2537
+ value: 91.0
2538
+ - type: ndcg_at_10
2539
+ value: 81.69800000000001
2540
+ - type: ndcg_at_100
2541
+ value: 62.9
2542
+ - type: ndcg_at_1000
2543
+ value: 55.245999999999995
2544
+ - type: ndcg_at_3
2545
+ value: 86.397
2546
+ - type: ndcg_at_5
2547
+ value: 84.286
2548
+ - type: precision_at_1
2549
+ value: 96.0
2550
+ - type: precision_at_10
2551
+ value: 87.0
2552
+ - type: precision_at_100
2553
+ value: 64.86
2554
+ - type: precision_at_1000
2555
+ value: 24.512
2556
+ - type: precision_at_3
2557
+ value: 90.667
2558
+ - type: precision_at_5
2559
+ value: 88.8
2560
+ - type: recall_at_1
2561
+ value: 0.26
2562
+ - type: recall_at_10
2563
+ value: 2.238
2564
+ - type: recall_at_100
2565
+ value: 15.488
2566
+ - type: recall_at_1000
2567
+ value: 51.6
2568
+ - type: recall_at_3
2569
+ value: 0.716
2570
+ - type: recall_at_5
2571
+ value: 1.151
2572
+ - task:
2573
+ type: Retrieval
2574
+ dataset:
2575
+ type: mteb/touche2020
2576
+ name: MTEB Touche2020
2577
+ config: default
2578
+ split: test
2579
+ revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
2580
+ metrics:
2581
+ - type: map_at_1
2582
+ value: 3.376
2583
+ - type: map_at_10
2584
+ value: 13.142000000000001
2585
+ - type: map_at_100
2586
+ value: 19.763
2587
+ - type: map_at_1000
2588
+ value: 21.319
2589
+ - type: map_at_3
2590
+ value: 6.805999999999999
2591
+ - type: map_at_5
2592
+ value: 8.952
2593
+ - type: mrr_at_1
2594
+ value: 46.939
2595
+ - type: mrr_at_10
2596
+ value: 61.082
2597
+ - type: mrr_at_100
2598
+ value: 61.45
2599
+ - type: mrr_at_1000
2600
+ value: 61.468999999999994
2601
+ - type: mrr_at_3
2602
+ value: 57.483
2603
+ - type: mrr_at_5
2604
+ value: 59.931999999999995
2605
+ - type: ndcg_at_1
2606
+ value: 44.897999999999996
2607
+ - type: ndcg_at_10
2608
+ value: 32.35
2609
+ - type: ndcg_at_100
2610
+ value: 42.719
2611
+ - type: ndcg_at_1000
2612
+ value: 53.30200000000001
2613
+ - type: ndcg_at_3
2614
+ value: 37.724999999999994
2615
+ - type: ndcg_at_5
2616
+ value: 34.79
2617
+ - type: precision_at_1
2618
+ value: 46.939
2619
+ - type: precision_at_10
2620
+ value: 28.366999999999997
2621
+ - type: precision_at_100
2622
+ value: 8.429
2623
+ - type: precision_at_1000
2624
+ value: 1.557
2625
+ - type: precision_at_3
2626
+ value: 38.095
2627
+ - type: precision_at_5
2628
+ value: 33.469
2629
+ - type: recall_at_1
2630
+ value: 3.376
2631
+ - type: recall_at_10
2632
+ value: 20.164
2633
+ - type: recall_at_100
2634
+ value: 50.668
2635
+ - type: recall_at_1000
2636
+ value: 83.159
2637
+ - type: recall_at_3
2638
+ value: 8.155
2639
+ - type: recall_at_5
2640
+ value: 11.872
2641
+ - task:
2642
+ type: Classification
2643
+ dataset:
2644
+ type: mteb/toxic_conversations_50k
2645
+ name: MTEB ToxicConversationsClassification
2646
+ config: default
2647
+ split: test
2648
+ revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
2649
+ metrics:
2650
+ - type: accuracy
2651
+ value: 66.739
2652
+ - type: ap
2653
+ value: 12.17931839228834
2654
+ - type: f1
2655
+ value: 51.05383188624636
2656
+ - task:
2657
+ type: Classification
2658
+ dataset:
2659
+ type: mteb/tweet_sentiment_extraction
2660
+ name: MTEB TweetSentimentExtractionClassification
2661
+ config: default
2662
+ split: test
2663
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2664
+ metrics:
2665
+ - type: accuracy
2666
+ value: 56.72891907187323
2667
+ - type: f1
2668
+ value: 56.997614557150946
2669
+ - task:
2670
+ type: Clustering
2671
+ dataset:
2672
+ type: mteb/twentynewsgroups-clustering
2673
+ name: MTEB TwentyNewsgroupsClustering
2674
+ config: default
2675
+ split: test
2676
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2677
+ metrics:
2678
+ - type: v_measure
2679
+ value: 39.825318429345224
2680
+ - task:
2681
+ type: PairClassification
2682
+ dataset:
2683
+ type: mteb/twittersemeval2015-pairclassification
2684
+ name: MTEB TwitterSemEval2015
2685
+ config: default
2686
+ split: test
2687
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2688
+ metrics:
2689
+ - type: cos_sim_accuracy
2690
+ value: 83.65619598259522
2691
+ - type: cos_sim_ap
2692
+ value: 66.17412885183877
2693
+ - type: cos_sim_f1
2694
+ value: 63.09125656951745
2695
+ - type: cos_sim_precision
2696
+ value: 57.63858577040594
2697
+ - type: cos_sim_recall
2698
+ value: 69.68337730870712
2699
+ - type: dot_accuracy
2700
+ value: 83.65619598259522
2701
+ - type: dot_ap
2702
+ value: 66.17413621964548
2703
+ - type: dot_f1
2704
+ value: 63.09125656951745
2705
+ - type: dot_precision
2706
+ value: 57.63858577040594
2707
+ - type: dot_recall
2708
+ value: 69.68337730870712
2709
+ - type: euclidean_accuracy
2710
+ value: 83.65619598259522
2711
+ - type: euclidean_ap
2712
+ value: 66.17412836413126
2713
+ - type: euclidean_f1
2714
+ value: 63.09125656951745
2715
+ - type: euclidean_precision
2716
+ value: 57.63858577040594
2717
+ - type: euclidean_recall
2718
+ value: 69.68337730870712
2719
+ - type: manhattan_accuracy
2720
+ value: 83.5548667819038
2721
+ - type: manhattan_ap
2722
+ value: 66.07998834521334
2723
+ - type: manhattan_f1
2724
+ value: 62.96433419721092
2725
+ - type: manhattan_precision
2726
+ value: 59.14676559239509
2727
+ - type: manhattan_recall
2728
+ value: 67.30870712401055
2729
+ - type: max_accuracy
2730
+ value: 83.65619598259522
2731
+ - type: max_ap
2732
+ value: 66.17413621964548
2733
+ - type: max_f1
2734
+ value: 63.09125656951745
2735
+ - task:
2736
+ type: PairClassification
2737
+ dataset:
2738
+ type: mteb/twitterurlcorpus-pairclassification
2739
+ name: MTEB TwitterURLCorpus
2740
+ config: default
2741
+ split: test
2742
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2743
+ metrics:
2744
+ - type: cos_sim_accuracy
2745
+ value: 88.55706911941631
2746
+ - type: cos_sim_ap
2747
+ value: 85.20971331546805
2748
+ - type: cos_sim_f1
2749
+ value: 77.28446050593702
2750
+ - type: cos_sim_precision
2751
+ value: 74.16135881104033
2752
+ - type: cos_sim_recall
2753
+ value: 80.6821681552202
2754
+ - type: dot_accuracy
2755
+ value: 88.55706911941631
2756
+ - type: dot_ap
2757
+ value: 85.2097154112633
2758
+ - type: dot_f1
2759
+ value: 77.28446050593702
2760
+ - type: dot_precision
2761
+ value: 74.16135881104033
2762
+ - type: dot_recall
2763
+ value: 80.6821681552202
2764
+ - type: euclidean_accuracy
2765
+ value: 88.55706911941631
2766
+ - type: euclidean_ap
2767
+ value: 85.20971719214488
2768
+ - type: euclidean_f1
2769
+ value: 77.28446050593702
2770
+ - type: euclidean_precision
2771
+ value: 74.16135881104033
2772
+ - type: euclidean_recall
2773
+ value: 80.6821681552202
2774
+ - type: manhattan_accuracy
2775
+ value: 88.52020025614158
2776
+ - type: manhattan_ap
2777
+ value: 85.17569799117058
2778
+ - type: manhattan_f1
2779
+ value: 77.27157773040933
2780
+ - type: manhattan_precision
2781
+ value: 72.79286638077734
2782
+ - type: manhattan_recall
2783
+ value: 82.33754234678165
2784
+ - type: max_accuracy
2785
+ value: 88.55706911941631
2786
+ - type: max_ap
2787
+ value: 85.20971719214488
2788
+ - type: max_f1
2789
+ value: 77.28446050593702
2790
+ - task:
2791
+ type: Clustering
2792
+ dataset:
2793
+ type: jinaai/cities_wiki_clustering
2794
+ name: MTEB WikiCitiesClustering
2795
+ config: default
2796
+ split: test
2797
+ revision: ddc9ee9242fa65332597f70e967ecc38b9d734fa
2798
+ metrics:
2799
+ - type: v_measure
2800
+ value: 85.63474850264893
2801
  ---