spacemanidol
commited on
Commit
•
de2c814
1
Parent(s):
e70ba91
Upload 2 files
Browse files- configuration_hf_nomic_bert.py +56 -0
- modeling_hf_nomic_bert.py +1221 -0
configuration_hf_nomic_bert.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import GPT2Config
|
2 |
+
|
3 |
+
|
4 |
+
class NomicBertConfig(GPT2Config):
|
5 |
+
model_type = "nomic_bert"
|
6 |
+
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
prenorm=False,
|
10 |
+
parallel_block=False,
|
11 |
+
parallel_block_tied_norm=False,
|
12 |
+
rotary_emb_fraction=0.0,
|
13 |
+
fused_dropout_add_ln=False,
|
14 |
+
fused_bias_fc=False,
|
15 |
+
use_flash_attn=False,
|
16 |
+
use_xentropy=False,
|
17 |
+
qkv_proj_bias=True,
|
18 |
+
rotary_emb_base=1000,
|
19 |
+
rotary_emb_scale_base=None,
|
20 |
+
rotary_emb_interleaved=False,
|
21 |
+
mlp_fc1_bias=True,
|
22 |
+
mlp_fc2_bias=True,
|
23 |
+
use_rms_norm=False,
|
24 |
+
causal=False,
|
25 |
+
type_vocab_size=2,
|
26 |
+
dense_seq_output=True,
|
27 |
+
pad_vocab_size_multiple=1,
|
28 |
+
tie_word_embeddings=True,
|
29 |
+
rotary_scaling_factor=1.0,
|
30 |
+
max_trained_positions=2048,
|
31 |
+
**kwargs,
|
32 |
+
):
|
33 |
+
self.prenorm = prenorm
|
34 |
+
self.parallel_block = parallel_block
|
35 |
+
self.parallel_block_tied_norm = parallel_block_tied_norm
|
36 |
+
self.rotary_emb_fraction = rotary_emb_fraction
|
37 |
+
self.tie_word_embeddings = tie_word_embeddings
|
38 |
+
self.fused_dropout_add_ln = fused_dropout_add_ln
|
39 |
+
self.fused_bias_fc = fused_bias_fc
|
40 |
+
self.use_flash_attn = use_flash_attn
|
41 |
+
self.use_xentropy = use_xentropy
|
42 |
+
self.qkv_proj_bias = qkv_proj_bias
|
43 |
+
self.rotary_emb_base = rotary_emb_base
|
44 |
+
self.rotary_emb_scale_base = rotary_emb_scale_base
|
45 |
+
self.rotary_emb_interleaved = rotary_emb_interleaved
|
46 |
+
self.mlp_fc1_bias = mlp_fc1_bias
|
47 |
+
self.mlp_fc2_bias = mlp_fc2_bias
|
48 |
+
self.use_rms_norm = use_rms_norm
|
49 |
+
self.causal = causal
|
50 |
+
self.type_vocab_size = type_vocab_size
|
51 |
+
self.dense_seq_output = dense_seq_output
|
52 |
+
self.pad_vocab_size_multiple = pad_vocab_size_multiple
|
53 |
+
self.rotary_scaling_factor = rotary_scaling_factor
|
54 |
+
self.max_trained_positions = max_trained_positions
|
55 |
+
|
56 |
+
super().__init__(**kwargs)
|
modeling_hf_nomic_bert.py
ADDED
@@ -0,0 +1,1221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022, Tri Dao.
|
2 |
+
# This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation.
|
3 |
+
# https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py
|
4 |
+
# https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py
|
5 |
+
|
6 |
+
import logging
|
7 |
+
|
8 |
+
# Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py
|
9 |
+
import os
|
10 |
+
import re
|
11 |
+
from collections import OrderedDict
|
12 |
+
from functools import partial
|
13 |
+
from typing import List, Optional, Tuple, Union
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from einops import rearrange, repeat
|
19 |
+
from safetensors.torch import load_file as safe_load_file
|
20 |
+
from transformers import GPT2Config, PreTrainedModel
|
21 |
+
from transformers.models.bert.modeling_bert import (
|
22 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
23 |
+
MaskedLMOutput,
|
24 |
+
SequenceClassifierOutput,
|
25 |
+
)
|
26 |
+
from transformers.utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME
|
27 |
+
from transformers.utils.hub import cached_file, get_checkpoint_shard_files
|
28 |
+
|
29 |
+
from .configuration_hf_nomic_bert import NomicBertConfig
|
30 |
+
|
31 |
+
logger = logging.getLogger(__name__)
|
32 |
+
|
33 |
+
|
34 |
+
# adapted from flash attention, added safe serialization option for hf models
|
35 |
+
def state_dict_from_pretrained(model_name, safe_serialization=False, device=None, dtype=None):
|
36 |
+
# If not fp32, then we don't want to load directly to the GPU
|
37 |
+
mapped_device = "cpu" if dtype not in [torch.float32, None] else device
|
38 |
+
is_sharded = False
|
39 |
+
load_safe = False
|
40 |
+
resolved_archive_file = None
|
41 |
+
|
42 |
+
weights_path = os.path.join(model_name, WEIGHTS_NAME)
|
43 |
+
weights_index_path = os.path.join(model_name, WEIGHTS_INDEX_NAME)
|
44 |
+
safe_weights_path = os.path.join(model_name, SAFE_WEIGHTS_NAME)
|
45 |
+
safe_weights_index_path = os.path.join(model_name, SAFE_WEIGHTS_INDEX_NAME)
|
46 |
+
|
47 |
+
if os.path.isfile(weights_path):
|
48 |
+
resolved_archive_file = cached_file(model_name, WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False)
|
49 |
+
elif os.path.isfile(weights_index_path):
|
50 |
+
resolved_archive_file = cached_file(model_name, WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False)
|
51 |
+
is_sharded = True
|
52 |
+
elif os.path.isfile(safe_weights_path):
|
53 |
+
resolved_archive_file = cached_file(model_name, SAFE_WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False)
|
54 |
+
load_safe = True
|
55 |
+
elif os.path.isfile(safe_weights_index_path):
|
56 |
+
resolved_archive_file = cached_file(
|
57 |
+
model_name, SAFE_WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False
|
58 |
+
)
|
59 |
+
is_sharded = True
|
60 |
+
load_safe = True
|
61 |
+
else: # Try loading from HF hub instead of from local files
|
62 |
+
weight_name = WEIGHTS_NAME if not safe_serialization else SAFE_WEIGHTS_NAME
|
63 |
+
resolved_archive_file = cached_file(model_name, weight_name, _raise_exceptions_for_missing_entries=False)
|
64 |
+
if resolved_archive_file is None:
|
65 |
+
weight_index = WEIGHTS_INDEX_NAME if not safe_serialization else SAFE_WEIGHTS_INDEX_NAME
|
66 |
+
resolved_archive_file = cached_file(model_name, weight_index, _raise_exceptions_for_missing_entries=False)
|
67 |
+
if resolved_archive_file is not None:
|
68 |
+
is_sharded = True
|
69 |
+
|
70 |
+
load_safe = safe_serialization
|
71 |
+
|
72 |
+
if resolved_archive_file is None:
|
73 |
+
raise EnvironmentError(f"Model name {model_name} was not found.")
|
74 |
+
|
75 |
+
if load_safe:
|
76 |
+
loader = partial(safe_load_file, device=mapped_device)
|
77 |
+
else:
|
78 |
+
loader = partial(torch.load, map_location=mapped_device)
|
79 |
+
|
80 |
+
if is_sharded:
|
81 |
+
# resolved_archive_file becomes a list of files that point to the different
|
82 |
+
# checkpoint shards in this case.
|
83 |
+
resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(model_name, resolved_archive_file)
|
84 |
+
state_dict = {}
|
85 |
+
for sharded_file in resolved_archive_file:
|
86 |
+
state_dict.update(loader(sharded_file))
|
87 |
+
else:
|
88 |
+
state_dict = loader(resolved_archive_file)
|
89 |
+
# Convert dtype before moving to GPU to save memory
|
90 |
+
if dtype is not None:
|
91 |
+
state_dict = {k: v.to(dtype=dtype) for k, v in state_dict.items()}
|
92 |
+
state_dict = {k: v.to(device=device) for k, v in state_dict.items()}
|
93 |
+
return state_dict
|
94 |
+
|
95 |
+
|
96 |
+
def filter_shapes(state_dict, model):
|
97 |
+
"""
|
98 |
+
Filters the state dict to match the current model shape.
|
99 |
+
"""
|
100 |
+
filtered_state_dict = {}
|
101 |
+
for key, value in state_dict.items():
|
102 |
+
if key in model.state_dict():
|
103 |
+
if value.shape == model.state_dict()[key].shape:
|
104 |
+
filtered_state_dict[key] = value
|
105 |
+
return filtered_state_dict
|
106 |
+
|
107 |
+
|
108 |
+
def remap_bert_state_dict(state_dict, config, remove_bert=False, remove_cls_weights=False, add_pooling_layer=False):
|
109 |
+
"""
|
110 |
+
Map the state_dict of a Huggingface BERT model to be flash_attn compatible.
|
111 |
+
"""
|
112 |
+
|
113 |
+
def add_bert_prefix(key):
|
114 |
+
# prepend bert. to the key
|
115 |
+
if key.startswith("bert.") or key.startswith("cls."):
|
116 |
+
return key
|
117 |
+
return f"bert.{key}"
|
118 |
+
|
119 |
+
state_dict = OrderedDict((add_bert_prefix(k), v) for k, v in state_dict.items())
|
120 |
+
|
121 |
+
# LayerNorm
|
122 |
+
def key_mapping_ln_gamma_beta(key):
|
123 |
+
key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key)
|
124 |
+
key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key)
|
125 |
+
return key
|
126 |
+
|
127 |
+
state_dict = OrderedDict((key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items())
|
128 |
+
|
129 |
+
# Layers
|
130 |
+
def key_mapping_layers(key):
|
131 |
+
return re.sub(r"^bert.encoder.layer\.", "bert.encoder.layers.", key)
|
132 |
+
|
133 |
+
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
|
134 |
+
|
135 |
+
# LayerNorm
|
136 |
+
def key_mapping_ln(key):
|
137 |
+
key = re.sub(r"^bert.embeddings.LayerNorm.", "bert.emb_ln.", key)
|
138 |
+
key = re.sub(
|
139 |
+
r"^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)",
|
140 |
+
r"bert.encoder.layers.\1.norm1.\2",
|
141 |
+
key,
|
142 |
+
)
|
143 |
+
key = re.sub(
|
144 |
+
r"^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)",
|
145 |
+
r"bert.encoder.layers.\1.norm2.\2",
|
146 |
+
key,
|
147 |
+
)
|
148 |
+
key = re.sub(
|
149 |
+
r"^cls.predictions.transform.LayerNorm.(weight|bias)",
|
150 |
+
r"cls.predictions.transform.layer_norm.\1",
|
151 |
+
key,
|
152 |
+
)
|
153 |
+
return key
|
154 |
+
|
155 |
+
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
|
156 |
+
|
157 |
+
# MLP
|
158 |
+
def key_mapping_mlp(key):
|
159 |
+
key = re.sub(
|
160 |
+
r"^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)",
|
161 |
+
r"bert.encoder.layers.\1.mlp.fc1.\2",
|
162 |
+
key,
|
163 |
+
)
|
164 |
+
key = re.sub(
|
165 |
+
r"^bert.encoder.layers.(\d+).output.dense.(weight|bias)",
|
166 |
+
r"bert.encoder.layers.\1.mlp.fc2.\2",
|
167 |
+
key,
|
168 |
+
)
|
169 |
+
return key
|
170 |
+
|
171 |
+
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
|
172 |
+
|
173 |
+
# Attention
|
174 |
+
last_layer_subset = getattr(config, "last_layer_subset", False)
|
175 |
+
for d in range(config.num_hidden_layers):
|
176 |
+
if f"bert.encoder.layers.{d}.attention.self.query.weight" not in state_dict:
|
177 |
+
continue
|
178 |
+
Wq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.weight")
|
179 |
+
Wk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.weight")
|
180 |
+
Wv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.weight")
|
181 |
+
bq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.bias")
|
182 |
+
bk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.bias")
|
183 |
+
bv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.bias")
|
184 |
+
if not (last_layer_subset and d == config.num_hidden_layers - 1):
|
185 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wqkv.weight"] = torch.cat([Wq, Wk, Wv], dim=0)
|
186 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wqkv.bias"] = torch.cat([bq, bk, bv], dim=0)
|
187 |
+
else:
|
188 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wq.weight"] = Wq
|
189 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wkv.weight"] = torch.cat([Wk, Wv], dim=0)
|
190 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wq.bias"] = bq
|
191 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wkv.bias"] = torch.cat([bk, bv], dim=0)
|
192 |
+
|
193 |
+
def key_mapping_attn(key):
|
194 |
+
return re.sub(
|
195 |
+
r"^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)",
|
196 |
+
r"bert.encoder.layers.\1.attn.out_proj.\2",
|
197 |
+
key,
|
198 |
+
)
|
199 |
+
|
200 |
+
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
|
201 |
+
|
202 |
+
def key_mapping_decoder_bias(key):
|
203 |
+
return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key)
|
204 |
+
|
205 |
+
# remove nsp weights, we don't use
|
206 |
+
state_dict.pop("cls.seq_relationship.weight", None)
|
207 |
+
state_dict.pop("cls.seq_relationship.bias", None)
|
208 |
+
state_dict.pop("bert.embeddings.position_ids", None)
|
209 |
+
|
210 |
+
state_dict = OrderedDict((key_mapping_decoder_bias(k), v) for k, v in state_dict.items())
|
211 |
+
|
212 |
+
if remove_cls_weights:
|
213 |
+
cls_weights = [
|
214 |
+
"cls.predictions.decoder.bias",
|
215 |
+
"cls.predictions.transform.dense.weight",
|
216 |
+
"cls.predictions.transform.dense.bias",
|
217 |
+
"cls.predictions.transform.layer_norm.weight",
|
218 |
+
"cls.predictions.transform.layer_norm.bias",
|
219 |
+
"cls.predictions.decoder.weight",
|
220 |
+
]
|
221 |
+
for weight in cls_weights:
|
222 |
+
state_dict.pop(weight, None)
|
223 |
+
|
224 |
+
# Word embedding
|
225 |
+
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
|
226 |
+
if pad_vocab_size_multiple > 1:
|
227 |
+
word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
|
228 |
+
state_dict["bert.embeddings.word_embeddings.weight"] = F.pad(
|
229 |
+
word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0])
|
230 |
+
)
|
231 |
+
if not remove_cls_weights:
|
232 |
+
decoder_weight = state_dict["cls.predictions.decoder.weight"]
|
233 |
+
state_dict["cls.predictions.decoder.weight"] = F.pad(
|
234 |
+
decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0])
|
235 |
+
)
|
236 |
+
# If the vocab was padded, we want to set the decoder bias for those padded indices to be
|
237 |
+
# strongly negative (i.e. the decoder shouldn't predict those indices).
|
238 |
+
# TD [2022-05-09]: I don't think it affects the MLPerf training.
|
239 |
+
if "cls.predictions.decoder.bias" in state_dict:
|
240 |
+
decoder_bias = state_dict["cls.predictions.decoder.bias"]
|
241 |
+
state_dict["cls.predictions.decoder.bias"] = F.pad(
|
242 |
+
decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0
|
243 |
+
)
|
244 |
+
|
245 |
+
if add_pooling_layer is False:
|
246 |
+
pooler_weights = [
|
247 |
+
"bert.pooler.dense.weight",
|
248 |
+
"bert.pooler.dense.bias",
|
249 |
+
]
|
250 |
+
for key in pooler_weights:
|
251 |
+
state_dict.pop(key, None)
|
252 |
+
|
253 |
+
if remove_bert:
|
254 |
+
|
255 |
+
def remove_bert_prefix(key):
|
256 |
+
key = re.sub(r"^bert.", "", key)
|
257 |
+
return key
|
258 |
+
|
259 |
+
state_dict = OrderedDict((remove_bert_prefix(k), v) for k, v in state_dict.items())
|
260 |
+
|
261 |
+
return state_dict
|
262 |
+
|
263 |
+
|
264 |
+
class NomicBertPreTrainedModel(PreTrainedModel):
|
265 |
+
"""An abstract class to handle weights initialization and
|
266 |
+
a simple interface for dowloading and loading pretrained models.
|
267 |
+
"""
|
268 |
+
|
269 |
+
config_class = NomicBertConfig
|
270 |
+
base_model_prefix = "model"
|
271 |
+
supports_gradient_checkpointing = True
|
272 |
+
_no_split_modules = ["Block"]
|
273 |
+
_skip_keys_device_placement = "past_key_values"
|
274 |
+
|
275 |
+
def __init__(self, config, *inputs, **kwargs):
|
276 |
+
super().__init__(config)
|
277 |
+
if not isinstance(config, GPT2Config):
|
278 |
+
raise ValueError(
|
279 |
+
"Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
|
280 |
+
"To create a model from a Google pretrained model use "
|
281 |
+
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
|
282 |
+
self.__class__.__name__, self.__class__.__name__
|
283 |
+
)
|
284 |
+
)
|
285 |
+
self.config = config
|
286 |
+
|
287 |
+
@classmethod
|
288 |
+
def from_pretrained(cls, model_name, config=None, *inputs, **kwargs):
|
289 |
+
"""
|
290 |
+
Instantiate a NomicBertPreTrainedModel from a pre-trained model file or a pytorch state dict.
|
291 |
+
Download and cache the pre-trained model file if needed.
|
292 |
+
|
293 |
+
Params:
|
294 |
+
pretrained_model_name_or_path: either:
|
295 |
+
- a path or url to a pretrained model archive containing:
|
296 |
+
. `bert_config.json` a configuration file for the model
|
297 |
+
. `pytorch_model.bin` a PyTorch dump of a NomicBertForPretraining instance
|
298 |
+
- a path or url to a pretrained model archive containing:
|
299 |
+
. `bert_config.json` a configuration file for the model
|
300 |
+
. `model.chkpt` a TensorFlow checkpoint
|
301 |
+
*inputs, **kwargs: additional input for the specific NomicBert class
|
302 |
+
(ex: num_labels for NomicBertForSequenceClassification)
|
303 |
+
"""
|
304 |
+
# Instantiate model.
|
305 |
+
if config is None:
|
306 |
+
config = cls.config_class.from_pretrained(model_name)
|
307 |
+
remove_cls = cls != NomicBertForPreTraining
|
308 |
+
remove_bert_prefix = cls != NomicBertForPreTraining
|
309 |
+
ignore_mismatched_shapes = kwargs.pop("ignore_mismatched_sizes", False)
|
310 |
+
num_labels = kwargs.pop("num_labels", None)
|
311 |
+
rotary_scaling_factor = kwargs.pop("rotary_scaling_factor", None)
|
312 |
+
if rotary_scaling_factor:
|
313 |
+
config.rotary_scaling_factor = rotary_scaling_factor
|
314 |
+
|
315 |
+
if config.n_positions <= 0 and config.rotary_emb_fraction > 0:
|
316 |
+
config.n_positions = 2048
|
317 |
+
if num_labels:
|
318 |
+
config.num_labels = num_labels
|
319 |
+
|
320 |
+
if "add_pooling_layer" in kwargs:
|
321 |
+
model = cls(config, *inputs, add_pooling_layer=kwargs.pop("add_pooling_layer"))
|
322 |
+
else:
|
323 |
+
if cls == NomicBertModel:
|
324 |
+
model = cls(config, *inputs, add_pooling_layer=False)
|
325 |
+
else:
|
326 |
+
model = cls(config, *inputs)
|
327 |
+
# TODO: fix this
|
328 |
+
# Assuming we know what we're doing when loading from disk
|
329 |
+
# Prob a bad assumption but i'm tired and want to train this asap
|
330 |
+
if os.path.exists(model_name):
|
331 |
+
model_path = f"{model_name}/pytorch_model.bin"
|
332 |
+
if os.path.exists(model_path):
|
333 |
+
state_dict = torch.load(f"{model_name}/pytorch_model.bin")
|
334 |
+
else:
|
335 |
+
model_path = f"{model_name}/model.safetensors"
|
336 |
+
if not os.path.exists(model_path):
|
337 |
+
raise ValueError(f"Model path {model_path} not found")
|
338 |
+
state_dict = safe_load_file(model_path)
|
339 |
+
|
340 |
+
if ignore_mismatched_shapes:
|
341 |
+
state_dict = filter_shapes(state_dict, model)
|
342 |
+
load_return = model.load_state_dict(state_dict, strict=False)
|
343 |
+
else:
|
344 |
+
# TODO: can probably check config class and see if we need to remap from a bert model
|
345 |
+
state_dict = state_dict_from_pretrained(model_name, safe_serialization=kwargs.get("safe_serialization", False))
|
346 |
+
state_dict = remap_bert_state_dict(
|
347 |
+
state_dict,
|
348 |
+
config,
|
349 |
+
remove_bert=remove_bert_prefix,
|
350 |
+
remove_cls_weights=remove_cls,
|
351 |
+
add_pooling_layer=getattr(config, "add_pooling_layer", False),
|
352 |
+
)
|
353 |
+
if ignore_mismatched_shapes:
|
354 |
+
state_dict = filter_shapes(state_dict, model)
|
355 |
+
|
356 |
+
load_return = model.load_state_dict(state_dict, strict=True)
|
357 |
+
logger.warning(load_return)
|
358 |
+
return model
|
359 |
+
|
360 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
361 |
+
if isinstance(module, NomicBertEncoder):
|
362 |
+
module.gradient_checkpointing = value
|
363 |
+
|
364 |
+
|
365 |
+
# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
|
366 |
+
def _init_weights(module, initializer_range=0.02):
|
367 |
+
if isinstance(module, nn.Linear):
|
368 |
+
nn.init.normal_(module.weight, std=initializer_range)
|
369 |
+
if module.bias is not None:
|
370 |
+
nn.init.zeros_(module.bias)
|
371 |
+
elif isinstance(module, nn.Embedding):
|
372 |
+
nn.init.normal_(module.weight, std=initializer_range)
|
373 |
+
if module.padding_idx is not None:
|
374 |
+
nn.init.zeros_(module.weight[module.padding_idx])
|
375 |
+
|
376 |
+
|
377 |
+
class NomicBertEmbeddings(nn.Module):
|
378 |
+
def __init__(self, config):
|
379 |
+
"""
|
380 |
+
If max_position_embeddings <= 0, there's no position embeddings
|
381 |
+
If type_vocab_size <= 0, there's no token type embeddings
|
382 |
+
"""
|
383 |
+
super().__init__()
|
384 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
385 |
+
self.max_position_embeddings = config.max_position_embeddings if config.rotary_emb_fraction <= 0 else 0
|
386 |
+
self.type_vocab_size = config.type_vocab_size
|
387 |
+
if self.max_position_embeddings > 0 and config.rotary_emb_fraction <= 0:
|
388 |
+
self.position_embeddings = nn.Embedding(
|
389 |
+
config.max_position_embeddings,
|
390 |
+
config.hidden_size,
|
391 |
+
)
|
392 |
+
if self.type_vocab_size > 0:
|
393 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
394 |
+
|
395 |
+
def forward(self, input_ids, position_ids=None, token_type_ids=None):
|
396 |
+
"""
|
397 |
+
input_ids: (batch, seqlen)
|
398 |
+
position_ids: (batch, seqlen)
|
399 |
+
token_type_ids: (batch, seqlen)
|
400 |
+
"""
|
401 |
+
batch_size, seqlen = input_ids.shape
|
402 |
+
embeddings = self.word_embeddings(input_ids)
|
403 |
+
|
404 |
+
if self.type_vocab_size > 0:
|
405 |
+
if token_type_ids is None:
|
406 |
+
token_type_ids = torch.zeros(seqlen, dtype=torch.long, device=input_ids.device)
|
407 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
408 |
+
embeddings = embeddings + token_type_embeddings
|
409 |
+
|
410 |
+
if self.max_position_embeddings > 0:
|
411 |
+
if position_ids is None:
|
412 |
+
position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device)
|
413 |
+
position_embeddings = self.position_embeddings(position_ids)
|
414 |
+
embeddings = embeddings + position_embeddings
|
415 |
+
return embeddings
|
416 |
+
|
417 |
+
|
418 |
+
class NomicBertMLP(nn.Module):
|
419 |
+
def __init__(
|
420 |
+
self,
|
421 |
+
in_features,
|
422 |
+
hidden_features=None,
|
423 |
+
out_features=None,
|
424 |
+
activation=F.gelu,
|
425 |
+
bias1=True,
|
426 |
+
bias2=True,
|
427 |
+
return_residual=False,
|
428 |
+
fused_bias_fc=False,
|
429 |
+
):
|
430 |
+
super().__init__()
|
431 |
+
out_features = out_features if out_features is not None else in_features
|
432 |
+
hidden_features = hidden_features if hidden_features is not None else in_features * 4
|
433 |
+
self.return_residual = return_residual
|
434 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1)
|
435 |
+
approximate = "tanh" if activation in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] else "none"
|
436 |
+
self.activation = nn.GELU(approximate=approximate) if activation == "gelu" else activation
|
437 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2)
|
438 |
+
|
439 |
+
def forward(self, x):
|
440 |
+
y = self.fc1(x)
|
441 |
+
y = self.activation(y)
|
442 |
+
y = self.fc2(y)
|
443 |
+
return y if not self.return_residual else (y, x)
|
444 |
+
|
445 |
+
|
446 |
+
class NomciBertGatedMLP(nn.Module):
|
447 |
+
def __init__(
|
448 |
+
self,
|
449 |
+
in_features,
|
450 |
+
hidden_features=None,
|
451 |
+
out_features=None,
|
452 |
+
activation=F.sigmoid,
|
453 |
+
bias1=True,
|
454 |
+
bias2=True,
|
455 |
+
multiple_of=256,
|
456 |
+
return_residual=False,
|
457 |
+
fused_bias_fc=True,
|
458 |
+
device=None,
|
459 |
+
dtype=None,
|
460 |
+
):
|
461 |
+
super().__init__()
|
462 |
+
out_features = out_features if out_features is not None else in_features
|
463 |
+
hidden_features = hidden_features if hidden_features is not None else int(8 * in_features / 3)
|
464 |
+
hidden_features = (hidden_features + multiple_of - 1) // multiple_of * multiple_of
|
465 |
+
self.return_residual = return_residual
|
466 |
+
|
467 |
+
self.fc11 = nn.Linear(in_features, hidden_features, bias=bias1)
|
468 |
+
self.fc12 = nn.Linear(in_features, hidden_features, bias=bias1)
|
469 |
+
self.activation = activation
|
470 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2)
|
471 |
+
|
472 |
+
def forward(self, x):
|
473 |
+
y = self.fc11(x)
|
474 |
+
gate = self.fc12(x)
|
475 |
+
if self.activation == F.sigmoid: # Special case for GLU
|
476 |
+
y = F.glu(torch.cat([y, gate], dim=-1), dim=-1)
|
477 |
+
else:
|
478 |
+
y = y * self.activation(gate)
|
479 |
+
y = self.fc2(y)
|
480 |
+
return y if not self.return_residual else (y, x)
|
481 |
+
|
482 |
+
|
483 |
+
def rotate_half(x, interleaved=False):
|
484 |
+
if not interleaved:
|
485 |
+
x1, x2 = x.chunk(2, dim=-1)
|
486 |
+
return torch.cat((-x2, x1), dim=-1)
|
487 |
+
else:
|
488 |
+
x1, x2 = x[..., ::2], x[..., 1::2]
|
489 |
+
return rearrange(torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2)
|
490 |
+
|
491 |
+
|
492 |
+
def apply_rotary_emb(x, cos, sin, offset=0, interleaved=False):
|
493 |
+
"""
|
494 |
+
x: (batch_size, seqlen, nheads, headdim)
|
495 |
+
cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
|
496 |
+
"""
|
497 |
+
ro_dim = cos.shape[-1] * 2
|
498 |
+
assert ro_dim <= x.shape[-1]
|
499 |
+
cos, sin = (
|
500 |
+
cos[offset : offset + x.shape[1]],
|
501 |
+
sin[offset : offset + x.shape[1]],
|
502 |
+
)
|
503 |
+
cos = repeat(cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
|
504 |
+
sin = repeat(sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
|
505 |
+
return torch.cat(
|
506 |
+
[x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin, x[..., ro_dim:]],
|
507 |
+
dim=-1,
|
508 |
+
)
|
509 |
+
|
510 |
+
|
511 |
+
class NomicBertRotaryEmbedding(nn.Module):
|
512 |
+
def __init__(
|
513 |
+
self,
|
514 |
+
dim: int,
|
515 |
+
base=10000.0,
|
516 |
+
interleaved=False,
|
517 |
+
scale_base=None,
|
518 |
+
pos_idx_in_fp32=True,
|
519 |
+
device=None,
|
520 |
+
):
|
521 |
+
"""
|
522 |
+
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
523 |
+
of 1st half and 2nd half (GPT-NeoX style).
|
524 |
+
pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32,
|
525 |
+
otherwise they might be in lower precision.
|
526 |
+
This option was added because previously (before 2023-07-02), when we construct
|
527 |
+
the position indices, we use the dtype of self.inv_freq. In most cases this would
|
528 |
+
be fp32, but if the model is trained in pure bf16 (not mixed precision), then
|
529 |
+
self.inv_freq would be bf16, and the position indices are also in bf16.
|
530 |
+
Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
|
531 |
+
embeddings for some positions will coincide.
|
532 |
+
To maintain compatibility with models previously trained in pure bf16,
|
533 |
+
we add this option.
|
534 |
+
"""
|
535 |
+
super().__init__()
|
536 |
+
self.dim = dim
|
537 |
+
self.base = float(base)
|
538 |
+
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
539 |
+
# Generate and save the inverse frequency buffer (non trainable)
|
540 |
+
inv_freq = self._compute_inv_freq(device)
|
541 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
542 |
+
self.interleaved = interleaved
|
543 |
+
self.scale_base = scale_base
|
544 |
+
scale = (
|
545 |
+
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
|
546 |
+
if scale_base is not None
|
547 |
+
else None
|
548 |
+
)
|
549 |
+
self.register_buffer("scale", scale, persistent=False)
|
550 |
+
|
551 |
+
self._seq_len_cached = 0
|
552 |
+
self._cos_cached = None
|
553 |
+
self._sin_cached = None
|
554 |
+
self._cos_k_cached = None
|
555 |
+
self._sin_k_cached = None
|
556 |
+
|
557 |
+
def _compute_inv_freq(self, device=None):
|
558 |
+
return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
|
559 |
+
|
560 |
+
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
561 |
+
# Reset the tables if the sequence length has changed,
|
562 |
+
# if we're on a new device (possibly due to tracing for instance),
|
563 |
+
# or if we're switching from inference mode to training
|
564 |
+
if (
|
565 |
+
seqlen > self._seq_len_cached
|
566 |
+
or self._cos_cached is None
|
567 |
+
or self._cos_cached.device != device
|
568 |
+
or self._cos_cached.dtype != dtype
|
569 |
+
or (self.training and self._cos_cached.is_inference())
|
570 |
+
):
|
571 |
+
self._seq_len_cached = seqlen
|
572 |
+
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
573 |
+
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
574 |
+
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
575 |
+
if self.pos_idx_in_fp32:
|
576 |
+
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
577 |
+
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
578 |
+
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
579 |
+
# cos & sin output to change significantly.
|
580 |
+
# We want to recompute self.inv_freq if it was not loaded in fp32
|
581 |
+
if self.inv_freq.dtype != torch.float32:
|
582 |
+
inv_freq = self._compute_inv_freq(device=device)
|
583 |
+
else:
|
584 |
+
inv_freq = self.inv_freq
|
585 |
+
else:
|
586 |
+
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
587 |
+
inv_freq = self.inv_freq
|
588 |
+
# Don't do einsum, it converts fp32 to fp16 under AMP
|
589 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
590 |
+
freqs = torch.outer(t, inv_freq)
|
591 |
+
self._cos_cached = torch.cos(freqs).to(dtype)
|
592 |
+
self._sin_cached = torch.sin(freqs).to(dtype)
|
593 |
+
|
594 |
+
def forward(
|
595 |
+
self,
|
596 |
+
qkv: torch.Tensor,
|
597 |
+
kv: Optional[torch.Tensor] = None,
|
598 |
+
seqlen_offset: Union[int, torch.Tensor] = 0,
|
599 |
+
max_seqlen: Optional[int] = None,
|
600 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
601 |
+
"""
|
602 |
+
qkv: (batch, seqlen, 3, nheads, headdim) if kv is none,
|
603 |
+
else it's just q of shape (batch, seqlen, nheads, headdim)
|
604 |
+
kv: (batch, seqlen, 2, nheads, headdim)
|
605 |
+
seqlen_offset: (batch_size,) or int. Each sequence in x is shifted by this amount.
|
606 |
+
Most commonly used in inference when we have KV cache.
|
607 |
+
If it's a tensor of shape (batch_size,), then to update the cos / sin cache, one
|
608 |
+
should pass in max_seqlen, which will update the cos / sin cache up to that length.
|
609 |
+
Apply rotary embedding *inplace* to qkv and / or kv.
|
610 |
+
"""
|
611 |
+
seqlen = qkv.shape[1]
|
612 |
+
if seqlen > self._seq_len_cached:
|
613 |
+
self._update_cos_sin_cache(seqlen, device=qkv.device, dtype=qkv.dtype)
|
614 |
+
elif max_seqlen is not None:
|
615 |
+
self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
|
616 |
+
elif isinstance(seqlen_offset, int):
|
617 |
+
self._update_cos_sin_cache(seqlen + seqlen_offset, device=qkv.device, dtype=qkv.dtype)
|
618 |
+
|
619 |
+
q_rot = apply_rotary_emb(qkv[:, :, 0], self._cos_cached, self._sin_cached, seqlen_offset, self.interleaved)
|
620 |
+
k_rot = apply_rotary_emb(qkv[:, :, 1], self._cos_cached, self._sin_cached, seqlen_offset, self.interleaved)
|
621 |
+
return torch.stack((q_rot, k_rot, qkv[:, :, 2]), dim=2)
|
622 |
+
|
623 |
+
|
624 |
+
class NomicBertDynamicNTKRotaryEmbedding(NomicBertRotaryEmbedding):
|
625 |
+
def __init__(self, rotary_scaling_factor, max_position_embeddings, **kwargs):
|
626 |
+
super().__init__(**kwargs)
|
627 |
+
self.rotary_scaling_factor = rotary_scaling_factor
|
628 |
+
self.max_position_embeddings = max_position_embeddings
|
629 |
+
|
630 |
+
def _compute_inv_freq(self, base=None, device=None):
|
631 |
+
if base is None:
|
632 |
+
base = self.base
|
633 |
+
return 1.0 / (base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
|
634 |
+
|
635 |
+
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
636 |
+
# Reset the tables if the sequence length has changed,
|
637 |
+
# if we're on a new device (possibly due to tracing for instance),
|
638 |
+
# or if we're switching from inference mode to training
|
639 |
+
if seqlen > self.max_position_embeddings:
|
640 |
+
base = self.base * (
|
641 |
+
(self.rotary_scaling_factor * seqlen / self.max_position_embeddings) - (self.rotary_scaling_factor - 1)
|
642 |
+
) ** (self.dim / (self.dim - 2))
|
643 |
+
inv_freq = self._compute_inv_freq(base=base, device=device)
|
644 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
645 |
+
|
646 |
+
if (
|
647 |
+
seqlen > self._seq_len_cached
|
648 |
+
or self._cos_cached is None
|
649 |
+
or self._cos_cached.device != device
|
650 |
+
or self._cos_cached.dtype != dtype
|
651 |
+
or (self.training and self._cos_cached.is_inference())
|
652 |
+
):
|
653 |
+
self._seq_len_cached = seqlen
|
654 |
+
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
655 |
+
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
656 |
+
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
657 |
+
if self.pos_idx_in_fp32:
|
658 |
+
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
659 |
+
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
660 |
+
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
661 |
+
# cos & sin output to change significantly.
|
662 |
+
# We want to recompute self.inv_freq if it was not loaded in fp32
|
663 |
+
if self.inv_freq.dtype != torch.float32:
|
664 |
+
if seqlen > self.max_position_embeddings:
|
665 |
+
base = self.base * (
|
666 |
+
(self.scaling_factor * seqlen / self.max_position_embeddings) - (self.scaling_factor - 1)
|
667 |
+
) ** (self.dim / (self.dim - 2))
|
668 |
+
else:
|
669 |
+
base = self.base
|
670 |
+
inv_freq = self._compute_inv_freq(device=device, base=base)
|
671 |
+
else:
|
672 |
+
inv_freq = self.inv_freq
|
673 |
+
else:
|
674 |
+
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
675 |
+
inv_freq = self.inv_freq
|
676 |
+
# Don't do einsum, it converts fp32 to fp16 under AMP
|
677 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
678 |
+
freqs = torch.outer(t, inv_freq)
|
679 |
+
if self.scale is None:
|
680 |
+
self._cos_cached = torch.cos(freqs).to(dtype)
|
681 |
+
self._sin_cached = torch.sin(freqs).to(dtype)
|
682 |
+
else:
|
683 |
+
power = (
|
684 |
+
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
|
685 |
+
) / self.scale_base
|
686 |
+
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
|
687 |
+
# We want the multiplication by scale to happen in fp32
|
688 |
+
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
689 |
+
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
690 |
+
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
691 |
+
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
692 |
+
|
693 |
+
|
694 |
+
class NomicBertAttention(nn.Module):
|
695 |
+
"""Multi-head self-attention and cross-attention"""
|
696 |
+
|
697 |
+
def __init__(
|
698 |
+
self,
|
699 |
+
config,
|
700 |
+
) -> None:
|
701 |
+
"""
|
702 |
+
num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads.
|
703 |
+
return_residual: whether to return the input x along with the output. This is for
|
704 |
+
performance reason: for post-norm architecture, returning the input allows us
|
705 |
+
to fuse the backward of nn.Linear with the residual connection.
|
706 |
+
"""
|
707 |
+
super().__init__()
|
708 |
+
self.embed_dim = config.n_embd
|
709 |
+
self.use_flash_attn = config.use_flash_attn
|
710 |
+
self.fused_bias_fc = config.fused_bias_fc
|
711 |
+
|
712 |
+
self.num_heads = config.n_head
|
713 |
+
self.num_heads_kv = config.num_heads_kv if getattr(config, "num_heads_kv", None) is not None else self.num_heads
|
714 |
+
assert self.embed_dim % self.num_heads == 0, "embed_dim must be divisible by num_heads"
|
715 |
+
self.head_dim = self.embed_dim // self.num_heads
|
716 |
+
# we don't really support mqa / gqa for now
|
717 |
+
qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
|
718 |
+
|
719 |
+
self.register_buffer(
|
720 |
+
"norm_factor",
|
721 |
+
torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()),
|
722 |
+
persistent=False,
|
723 |
+
)
|
724 |
+
|
725 |
+
self.rotary_emb_dim = self.head_dim * config.rotary_emb_fraction
|
726 |
+
if self.rotary_emb_dim > 0:
|
727 |
+
if config.rotary_scaling_factor:
|
728 |
+
self.rotary_emb = NomicBertDynamicNTKRotaryEmbedding(
|
729 |
+
dim=self.rotary_emb_dim,
|
730 |
+
base=config.rotary_emb_base,
|
731 |
+
scale_base=config.rotary_emb_scale_base,
|
732 |
+
interleaved=config.rotary_emb_interleaved,
|
733 |
+
rotary_scaling_factor=config.rotary_scaling_factor,
|
734 |
+
max_position_embeddings=config.max_trained_positions,
|
735 |
+
)
|
736 |
+
else:
|
737 |
+
self.rotary_emb = NomicBertRotaryEmbedding(
|
738 |
+
dim=self.rotary_emb_dim,
|
739 |
+
base=config.rotary_emb_base,
|
740 |
+
scale_base=config.rotary_emb_scale_base,
|
741 |
+
interleaved=config.rotary_emb_interleaved,
|
742 |
+
)
|
743 |
+
# bug in xformers: https://github.com/facebookresearch/xformers/issues/841
|
744 |
+
# uses the head dimension instead of the sequence dimension
|
745 |
+
self.rotary_head_dim = getattr(config, "rotary_head_dim", False)
|
746 |
+
|
747 |
+
self.Wqkv = nn.Linear(self.embed_dim, qkv_dim, bias=config.qkv_proj_bias)
|
748 |
+
|
749 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_proj_bias)
|
750 |
+
self.causal = config.causal
|
751 |
+
self.drop = nn.Dropout(config.attn_pdrop)
|
752 |
+
|
753 |
+
def forward(
|
754 |
+
self,
|
755 |
+
hidden_states: torch.Tensor,
|
756 |
+
attention_mask: Optional[torch.Tensor] = None,
|
757 |
+
position_ids: Optional[torch.LongTensor] = None,
|
758 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
759 |
+
output_attentions: bool = False,
|
760 |
+
use_cache: bool = False,
|
761 |
+
is_padded_inputs: Optional[bool] = True,
|
762 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
763 |
+
max_seq_len: Optional[int] = None,
|
764 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
765 |
+
|
766 |
+
has_layer_past = past_key_value is not None
|
767 |
+
|
768 |
+
if has_layer_past:
|
769 |
+
past_key_value = past_key_value[0]
|
770 |
+
past_len = past_key_value[1]
|
771 |
+
else:
|
772 |
+
past_len = 0
|
773 |
+
|
774 |
+
qkv = self.Wqkv(hidden_states)
|
775 |
+
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
|
776 |
+
|
777 |
+
past_key_value = (past_key_value, past_len + qkv.size(1)) if use_cache else None
|
778 |
+
|
779 |
+
if self.rotary_emb_dim > 0:
|
780 |
+
if self.rotary_head_dim:
|
781 |
+
qkv = rearrange(qkv, "b s three h d -> b h three s d")
|
782 |
+
qkv = self.rotary_emb(qkv, seqlen_offset=past_len)
|
783 |
+
|
784 |
+
if self.rotary_head_dim:
|
785 |
+
qkv = rearrange(qkv, "b h three s d -> b s three h d")
|
786 |
+
|
787 |
+
query, key, value = qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2]
|
788 |
+
|
789 |
+
query = query.permute(0, 2, 1, 3)
|
790 |
+
key = key.permute(0, 2, 1, 3)
|
791 |
+
value = value.permute(0, 2, 1, 3)
|
792 |
+
|
793 |
+
attention_scores = torch.matmul(query, key.transpose(-1, -2)) / self.norm_factor
|
794 |
+
if attention_mask is not None:
|
795 |
+
attention_scores = attention_scores + attention_mask
|
796 |
+
|
797 |
+
attentions_probs = F.softmax(attention_scores, dim=-1)
|
798 |
+
attentions_probs = self.drop(attentions_probs)
|
799 |
+
|
800 |
+
attn_output = torch.matmul(attentions_probs, value)
|
801 |
+
attn_output = rearrange(attn_output.permute(0, 2, 1, 3), "... h d -> ... (h d)")
|
802 |
+
|
803 |
+
attn_output = self.out_proj(attn_output)
|
804 |
+
|
805 |
+
return attn_output
|
806 |
+
|
807 |
+
|
808 |
+
class NomicBertBlock(nn.Module):
|
809 |
+
def __init__(
|
810 |
+
self,
|
811 |
+
config,
|
812 |
+
):
|
813 |
+
super().__init__()
|
814 |
+
self.prenorm = config.prenorm
|
815 |
+
self.fused_dropout_add_ln = config.fused_dropout_add_ln
|
816 |
+
|
817 |
+
self.attn = NomicBertAttention(config)
|
818 |
+
activation = (
|
819 |
+
F.sigmoid
|
820 |
+
if config.activation_function == "glu"
|
821 |
+
else (F.silu if config.activation_function == "swiglu" else F.gelu)
|
822 |
+
)
|
823 |
+
if config.activation_function in ["glu", "swiglu", "geglu"]:
|
824 |
+
self.mlp = NomciBertGatedMLP(
|
825 |
+
config.n_embd,
|
826 |
+
hidden_features=config.n_inner,
|
827 |
+
bias1=config.mlp_fc1_bias,
|
828 |
+
bias2=config.mlp_fc2_bias,
|
829 |
+
activation=activation,
|
830 |
+
fused_bias_fc=config.fused_bias_fc,
|
831 |
+
)
|
832 |
+
else:
|
833 |
+
self.mlp = NomicBertMLP(
|
834 |
+
config.n_embd,
|
835 |
+
hidden_features=config.n_inner,
|
836 |
+
bias1=config.mlp_fc1_bias,
|
837 |
+
bias2=config.mlp_fc2_bias,
|
838 |
+
activation=activation,
|
839 |
+
fused_bias_fc=config.fused_bias_fc,
|
840 |
+
)
|
841 |
+
|
842 |
+
self.dropout1 = nn.Dropout(config.resid_pdrop)
|
843 |
+
self.norm1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
844 |
+
self.norm2 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
845 |
+
self.dropout2 = nn.Dropout(config.resid_pdrop)
|
846 |
+
|
847 |
+
def forward(
|
848 |
+
self,
|
849 |
+
hidden_states: torch.Tensor,
|
850 |
+
hidden_states2: torch.Tensor,
|
851 |
+
residual: Optional[torch.Tensor] = None,
|
852 |
+
attention_mask: Optional[torch.Tensor] = None,
|
853 |
+
position_ids: Optional[torch.LongTensor] = None,
|
854 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
855 |
+
is_padded_inputs: Optional[bool] = True,
|
856 |
+
output_attentions: Optional[bool] = False,
|
857 |
+
use_cache: Optional[bool] = False,
|
858 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
859 |
+
max_seq_len: Optional[int] = None,
|
860 |
+
):
|
861 |
+
r"""Pass the input through the encoder layer.
|
862 |
+
|
863 |
+
Args:
|
864 |
+
hidden_states: the sequence to the encoder layer (required).
|
865 |
+
residual: if postnorm, residual=None, If prenorm, hidden_states = Attn/MLP(LN(residual))
|
866 |
+
mixer_subset: for cross-attention only. If not None, will take a subset of x
|
867 |
+
before applying the query projection. Useful for e.g., ViT where we only care
|
868 |
+
about the CLS token in the last layer.
|
869 |
+
"""
|
870 |
+
if self.prenorm:
|
871 |
+
dropped = self.dropout1(hidden_states)
|
872 |
+
residual = (dropped + residual) if residual is not None else dropped
|
873 |
+
hidden_states = self.norm1(residual.to(dtype=self.norm1.weight.dtype))
|
874 |
+
hidden_states = self.attn(
|
875 |
+
hidden_states,
|
876 |
+
attention_mask=attention_mask,
|
877 |
+
is_padded_inputs=is_padded_inputs,
|
878 |
+
cu_seqlens=cu_seqlens,
|
879 |
+
max_seq_len=max_seq_len,
|
880 |
+
)
|
881 |
+
|
882 |
+
dropped = self.dropout2(hidden_states)
|
883 |
+
residual = (dropped + residual) if residual is not None else dropped
|
884 |
+
hidden_states = self.norm2(residual.to(dtype=self.norm2.weight.dtype))
|
885 |
+
hidden_states = self.mlp(hidden_states)
|
886 |
+
|
887 |
+
return hidden_states, None, residual
|
888 |
+
else:
|
889 |
+
assert residual is None
|
890 |
+
attn_outputs = self.attn(
|
891 |
+
hidden_states,
|
892 |
+
attention_mask=attention_mask,
|
893 |
+
is_padded_inputs=is_padded_inputs,
|
894 |
+
cu_seqlens=cu_seqlens,
|
895 |
+
max_seq_len=max_seq_len,
|
896 |
+
)
|
897 |
+
hidden_states = self.norm1((self.dropout1(attn_outputs) + hidden_states).to(dtype=self.norm1.weight.dtype))
|
898 |
+
mlp_out = self.mlp(hidden_states)
|
899 |
+
|
900 |
+
hidden_states = self.norm2((self.dropout2(mlp_out) + hidden_states).to(dtype=self.norm2.weight.dtype))
|
901 |
+
return hidden_states, None, None
|
902 |
+
|
903 |
+
|
904 |
+
class NomicBertEncoder(nn.Module):
|
905 |
+
def __init__(self, config: GPT2Config):
|
906 |
+
super().__init__()
|
907 |
+
self.layers = nn.ModuleList([NomicBertBlock(config) for _ in range(config.n_layer)])
|
908 |
+
self.gradient_checkpointing = False
|
909 |
+
self.config = config
|
910 |
+
|
911 |
+
def forward(
|
912 |
+
self,
|
913 |
+
hidden_states: torch.LongTensor = None,
|
914 |
+
attention_mask: Optional[torch.Tensor] = None,
|
915 |
+
position_ids: Optional[torch.LongTensor] = None,
|
916 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
917 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
918 |
+
use_cache: Optional[bool] = None,
|
919 |
+
output_attentions: Optional[bool] = None,
|
920 |
+
output_hidden_states: Optional[bool] = None,
|
921 |
+
return_dict: Optional[bool] = None,
|
922 |
+
is_padded_inputs: Optional[bool] = True,
|
923 |
+
):
|
924 |
+
"""If subset_mask is not None, we only want output for the subset of the sequence.
|
925 |
+
This means that we only compute the last layer output for these tokens.
|
926 |
+
subset_mask: (batch, seqlen), dtype=torch.bool
|
927 |
+
"""
|
928 |
+
hidden_states2 = None
|
929 |
+
residual = None
|
930 |
+
|
931 |
+
for _, layer in enumerate(self.layers):
|
932 |
+
if self.gradient_checkpointing and self.training:
|
933 |
+
|
934 |
+
def create_custom_forward(module):
|
935 |
+
def custom_forward(*inputs):
|
936 |
+
# None for past_key_value
|
937 |
+
return module(*inputs)
|
938 |
+
|
939 |
+
return custom_forward
|
940 |
+
|
941 |
+
hidden_states, hidden_states2, residual = torch.utils.checkpoint.checkpoint(
|
942 |
+
create_custom_forward(layer),
|
943 |
+
hidden_states,
|
944 |
+
hidden_states2,
|
945 |
+
residual,
|
946 |
+
attention_mask,
|
947 |
+
None,
|
948 |
+
None,
|
949 |
+
is_padded_inputs,
|
950 |
+
# if you freeze ANY layers, you need `use_reentrant=False`
|
951 |
+
# https://github.com/huggingface/transformers/issues/21381
|
952 |
+
# https://discuss.pytorch.org/t/checkpoint-with-no-grad-requiring-inputs-problem/19117/7
|
953 |
+
use_reentrant=False,
|
954 |
+
)
|
955 |
+
|
956 |
+
else:
|
957 |
+
hidden_states, hidden_states2, residual = layer(
|
958 |
+
hidden_states,
|
959 |
+
hidden_states2,
|
960 |
+
residual,
|
961 |
+
attention_mask,
|
962 |
+
position_ids,
|
963 |
+
None,
|
964 |
+
is_padded_inputs,
|
965 |
+
output_attentions,
|
966 |
+
use_cache,
|
967 |
+
)
|
968 |
+
return hidden_states
|
969 |
+
|
970 |
+
|
971 |
+
class NomicBertPooler(nn.Module):
|
972 |
+
def __init__(self, config):
|
973 |
+
super().__init__()
|
974 |
+
self.dense = nn.Linear(config.n_embd, config.n_embd)
|
975 |
+
self.activation = nn.Tanh()
|
976 |
+
|
977 |
+
def forward(self, hidden_states, pool=True):
|
978 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
979 |
+
# to the first token.
|
980 |
+
first_token_tensor = hidden_states[:, 0] if pool else hidden_states
|
981 |
+
pooled_output = self.dense(first_token_tensor)
|
982 |
+
pooled_output = self.activation(pooled_output)
|
983 |
+
return pooled_output
|
984 |
+
|
985 |
+
|
986 |
+
class NomicBertPredictionHeadTransform(nn.Module):
|
987 |
+
def __init__(self, config):
|
988 |
+
super().__init__()
|
989 |
+
self.dense = nn.Linear(config.n_embd, config.n_embd, bias=config.mlp_fc1_bias)
|
990 |
+
approximate = "tanh" if config.activation_function in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] else "none"
|
991 |
+
if config.activation_function == "swiglu":
|
992 |
+
self.transform_act_fn = F.silu
|
993 |
+
else:
|
994 |
+
self.transform_act_fn = nn.GELU(approximate=approximate)
|
995 |
+
|
996 |
+
self.layer_norm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
997 |
+
|
998 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
999 |
+
hidden_states = self.dense(hidden_states)
|
1000 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
1001 |
+
hidden_states = self.layer_norm(hidden_states)
|
1002 |
+
|
1003 |
+
return hidden_states
|
1004 |
+
|
1005 |
+
|
1006 |
+
class NomicBertLMPredictionHead(nn.Module):
|
1007 |
+
def __init__(self, config):
|
1008 |
+
super().__init__()
|
1009 |
+
|
1010 |
+
self.transform = NomicBertPredictionHeadTransform(config)
|
1011 |
+
|
1012 |
+
self.decoder = nn.Linear(config.n_embd, config.vocab_size, bias=config.mlp_fc1_bias)
|
1013 |
+
|
1014 |
+
def forward(self, hidden_states):
|
1015 |
+
hidden_states = self.transform(hidden_states)
|
1016 |
+
hidden_states = self.decoder(hidden_states)
|
1017 |
+
return hidden_states
|
1018 |
+
|
1019 |
+
|
1020 |
+
class NomicBertPreTrainingHeads(nn.Module):
|
1021 |
+
def __init__(self, config):
|
1022 |
+
super().__init__()
|
1023 |
+
self.predictions = NomicBertLMPredictionHead(config)
|
1024 |
+
|
1025 |
+
def forward(self, sequence_output):
|
1026 |
+
prediction_scores = self.predictions(sequence_output)
|
1027 |
+
return prediction_scores
|
1028 |
+
|
1029 |
+
|
1030 |
+
class NomicBertModel(NomicBertPreTrainedModel):
|
1031 |
+
def __init__(self, config: GPT2Config, add_pooling_layer=True):
|
1032 |
+
super().__init__(config)
|
1033 |
+
self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
|
1034 |
+
if config.vocab_size % self.pad_vocab_size_multiple != 0:
|
1035 |
+
config.vocab_size += self.pad_vocab_size_multiple - (config.vocab_size % self.pad_vocab_size_multiple)
|
1036 |
+
|
1037 |
+
assert config.activation_function in [
|
1038 |
+
"gelu",
|
1039 |
+
"gelu_new",
|
1040 |
+
"gelu_fast",
|
1041 |
+
"gelu_pytorch_tanh",
|
1042 |
+
"swiglu",
|
1043 |
+
"geglu",
|
1044 |
+
"glu",
|
1045 |
+
]
|
1046 |
+
|
1047 |
+
self.embeddings = NomicBertEmbeddings(config)
|
1048 |
+
self.emb_drop = nn.Dropout(config.resid_pdrop)
|
1049 |
+
self.emb_ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
1050 |
+
self.encoder = NomicBertEncoder(config)
|
1051 |
+
self.pooler = NomicBertPooler(config) if add_pooling_layer else None
|
1052 |
+
|
1053 |
+
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
1054 |
+
|
1055 |
+
def forward(
|
1056 |
+
self,
|
1057 |
+
input_ids,
|
1058 |
+
attention_mask=None,
|
1059 |
+
token_type_ids=None,
|
1060 |
+
position_ids=None,
|
1061 |
+
return_dict=None,
|
1062 |
+
):
|
1063 |
+
if token_type_ids is None:
|
1064 |
+
token_type_ids = torch.zeros_like(input_ids)
|
1065 |
+
hidden_states = self.embeddings(input_ids, position_ids=position_ids, token_type_ids=token_type_ids)
|
1066 |
+
hidden_states = self.emb_ln(hidden_states)
|
1067 |
+
hidden_states = self.emb_drop(hidden_states)
|
1068 |
+
|
1069 |
+
attention_mask = self.get_extended_attention_mask(attention_mask, input_ids.shape)
|
1070 |
+
sequence_output = self.encoder(hidden_states, attention_mask=attention_mask, return_dict=return_dict)
|
1071 |
+
|
1072 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
1073 |
+
|
1074 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
1075 |
+
last_hidden_state=sequence_output,
|
1076 |
+
pooler_output=pooled_output,
|
1077 |
+
)
|
1078 |
+
|
1079 |
+
|
1080 |
+
class NomicBertForPreTraining(NomicBertPreTrainedModel):
|
1081 |
+
_tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
|
1082 |
+
|
1083 |
+
def __init__(self, config: GPT2Config):
|
1084 |
+
super().__init__(config)
|
1085 |
+
|
1086 |
+
self.bert = NomicBertModel(config, add_pooling_layer=getattr(config, "add_pooling_layer", False))
|
1087 |
+
self.cls = NomicBertPreTrainingHeads(config)
|
1088 |
+
self.mlm_loss = nn.CrossEntropyLoss()
|
1089 |
+
|
1090 |
+
# Initialize weights and apply final processing
|
1091 |
+
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
1092 |
+
self.tie_weights()
|
1093 |
+
|
1094 |
+
def tie_weights(self):
|
1095 |
+
self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight
|
1096 |
+
|
1097 |
+
def forward(
|
1098 |
+
self,
|
1099 |
+
input_ids,
|
1100 |
+
position_ids=None,
|
1101 |
+
token_type_ids=None,
|
1102 |
+
attention_mask=None,
|
1103 |
+
labels=None,
|
1104 |
+
):
|
1105 |
+
"""
|
1106 |
+
If labels are provided, they must be -100 for masked out tokens (as specified in the attention
|
1107 |
+
mask).
|
1108 |
+
Outputs:
|
1109 |
+
if `labels` and `next_sentence_label` are not `None`:
|
1110 |
+
Outputs the total_loss which is the sum of the masked language modeling loss and the next
|
1111 |
+
sentence classification loss.
|
1112 |
+
if `labels` or `next_sentence_label` is `None`:
|
1113 |
+
Outputs a tuple comprising
|
1114 |
+
- the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
|
1115 |
+
- the next sentence classification logits of shape [batch_size, 2].
|
1116 |
+
|
1117 |
+
"""
|
1118 |
+
outputs = self.bert(
|
1119 |
+
input_ids,
|
1120 |
+
position_ids=position_ids,
|
1121 |
+
token_type_ids=token_type_ids,
|
1122 |
+
attention_mask=attention_mask.bool() if attention_mask is not None else None,
|
1123 |
+
)
|
1124 |
+
sequence_output, _ = outputs.last_hidden_state, outputs.pooler_output
|
1125 |
+
|
1126 |
+
prediction_scores = self.cls(sequence_output)
|
1127 |
+
|
1128 |
+
total_loss = None
|
1129 |
+
if labels is not None:
|
1130 |
+
masked_lm_loss = self.mlm_loss(
|
1131 |
+
rearrange(prediction_scores, "... v -> (...) v"),
|
1132 |
+
rearrange(labels, "... -> (...)"),
|
1133 |
+
)
|
1134 |
+
total_loss = masked_lm_loss.float()
|
1135 |
+
|
1136 |
+
return MaskedLMOutput(
|
1137 |
+
loss=total_loss,
|
1138 |
+
logits=prediction_scores,
|
1139 |
+
hidden_states=outputs.hidden_states,
|
1140 |
+
attentions=None,
|
1141 |
+
)
|
1142 |
+
|
1143 |
+
|
1144 |
+
class NomicBertForSequenceClassification(NomicBertPreTrainedModel):
|
1145 |
+
def __init__(self, config):
|
1146 |
+
super().__init__(config)
|
1147 |
+
self.num_labels = config.num_labels
|
1148 |
+
self.config = config
|
1149 |
+
|
1150 |
+
self.bert = NomicBertModel(config)
|
1151 |
+
classifier_dropout = getattr(config, "classifier_dropout", config.embd_pdrop)
|
1152 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1153 |
+
self.classifier = nn.Linear(config.n_embd, config.num_labels)
|
1154 |
+
|
1155 |
+
# Initialize weights and apply final processing
|
1156 |
+
self.post_init()
|
1157 |
+
|
1158 |
+
def forward(
|
1159 |
+
self,
|
1160 |
+
input_ids: Optional[torch.Tensor] = None,
|
1161 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1162 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1163 |
+
position_ids: Optional[torch.Tensor] = None,
|
1164 |
+
head_mask: Optional[torch.Tensor] = None,
|
1165 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1166 |
+
labels: Optional[torch.Tensor] = None,
|
1167 |
+
output_attentions: Optional[bool] = None,
|
1168 |
+
output_hidden_states: Optional[bool] = None,
|
1169 |
+
return_dict: Optional[bool] = None,
|
1170 |
+
):
|
1171 |
+
r"""
|
1172 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1173 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1174 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1175 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1176 |
+
"""
|
1177 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1178 |
+
outputs = self.bert(
|
1179 |
+
input_ids,
|
1180 |
+
position_ids=position_ids,
|
1181 |
+
token_type_ids=token_type_ids,
|
1182 |
+
attention_mask=attention_mask.bool() if attention_mask is not None else None,
|
1183 |
+
)
|
1184 |
+
|
1185 |
+
pooled_output = outputs[1]
|
1186 |
+
|
1187 |
+
pooled_output = self.dropout(pooled_output)
|
1188 |
+
logits = self.classifier(pooled_output)
|
1189 |
+
|
1190 |
+
loss = None
|
1191 |
+
if labels is not None:
|
1192 |
+
if self.config.problem_type is None:
|
1193 |
+
if self.num_labels == 1:
|
1194 |
+
self.config.problem_type = "regression"
|
1195 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1196 |
+
self.config.problem_type = "single_label_classification"
|
1197 |
+
else:
|
1198 |
+
self.config.problem_type = "multi_label_classification"
|
1199 |
+
|
1200 |
+
if self.config.problem_type == "regression":
|
1201 |
+
loss_fct = nn.MSELoss()
|
1202 |
+
if self.num_labels == 1:
|
1203 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1204 |
+
else:
|
1205 |
+
loss = loss_fct(logits, labels)
|
1206 |
+
elif self.config.problem_type == "single_label_classification":
|
1207 |
+
loss_fct = nn.CrossEntropyLoss()
|
1208 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1209 |
+
elif self.config.problem_type == "multi_label_classification":
|
1210 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
1211 |
+
loss = loss_fct(logits, labels)
|
1212 |
+
if not return_dict:
|
1213 |
+
output = (logits,) + outputs[2:]
|
1214 |
+
return ((loss,) + output) if loss is not None else output
|
1215 |
+
|
1216 |
+
return SequenceClassifierOutput(
|
1217 |
+
loss=loss,
|
1218 |
+
logits=logits,
|
1219 |
+
hidden_states=outputs.hidden_states,
|
1220 |
+
attentions=outputs.attentions,
|
1221 |
+
)
|