--- library_name: transformers license: apache-2.0 datasets: - HuggingFaceTB/smollm-corpus language: - en pipeline_tag: text-generation --- # **Doge 60M checkpoint** ![wsd_scheduler](./wsd_scheduler.png) Doge uses `wsd_scheduler` as the training scheduler, which divides the learning rate into three stages: `warmup`, `stable`, and `decay`. It allows us to continue training on any new dataset from any checkpoint in the `stable stage` without spikes of the training. Here are the initial learning rates required to continue training at each checkpoint: - **[Doge-20M](https://huggingface.co./SmallDoge/Doge-20M-checkpoint)**: 8e-3 - **[Doge-60M](https://huggingface.co./SmallDoge/Doge-60M-checkpoint)**: 6e-3 - **[Doge-160M]((https://huggingface.co./SmallDoge/Doge-160M-checkpoint))**: 4e-3 - **Doge-320M**: 2e-3 | Model | Learning Rate | Schedule | Warmup Steps | Stable Steps | |-------|---------------|----------|--------------|--------------| | Doge-20M | 8e-3 | wsd_scheduler | 800 | 6400 | | Doge-60M | 6e-3 | wsd_scheduler | 1600 | 12800 | | Doge-160M | 4e-3 | wsd_scheduler | 2400 | 19200 | | Doge-320M | 2e-3 | wsd_scheduler | 3200 | 25600 |