--- license: cc-by-4.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 base_model: l3cube-pune/hing-mbert model-index: - name: hing-mbert-ours-run-3 results: [] --- # hing-mbert-ours-run-3 This model is a fine-tuned version of [l3cube-pune/hing-mbert](https://huggingface.co./l3cube-pune/hing-mbert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.9769 - Accuracy: 0.675 - Precision: 0.6433 - Recall: 0.6344 - F1: 0.6344 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.9089 | 1.0 | 100 | 1.0993 | 0.635 | 0.6487 | 0.5304 | 0.5060 | | 0.6657 | 2.0 | 200 | 0.8138 | 0.645 | 0.6550 | 0.6482 | 0.6234 | | 0.3858 | 3.0 | 300 | 1.1334 | 0.665 | 0.6162 | 0.6061 | 0.5995 | | 0.208 | 4.0 | 400 | 1.9041 | 0.685 | 0.6488 | 0.6169 | 0.6087 | | 0.0996 | 5.0 | 500 | 2.3735 | 0.645 | 0.5867 | 0.5781 | 0.5794 | | 0.0296 | 6.0 | 600 | 2.5772 | 0.665 | 0.6284 | 0.6208 | 0.6198 | | 0.0623 | 7.0 | 700 | 2.8906 | 0.655 | 0.6040 | 0.5916 | 0.5926 | | 0.0395 | 8.0 | 800 | 2.6567 | 0.675 | 0.6279 | 0.6254 | 0.6219 | | 0.029 | 9.0 | 900 | 2.9277 | 0.655 | 0.6208 | 0.5950 | 0.5991 | | 0.0194 | 10.0 | 1000 | 2.7362 | 0.665 | 0.6241 | 0.6208 | 0.6190 | | 0.0092 | 11.0 | 1100 | 2.5561 | 0.68 | 0.6396 | 0.6401 | 0.6385 | | 0.0059 | 12.0 | 1200 | 3.1112 | 0.675 | 0.6350 | 0.5967 | 0.6042 | | 0.0133 | 13.0 | 1300 | 2.5269 | 0.685 | 0.6520 | 0.6607 | 0.6519 | | 0.0051 | 14.0 | 1400 | 2.8736 | 0.68 | 0.6381 | 0.6158 | 0.6134 | | 0.0044 | 15.0 | 1500 | 2.9132 | 0.675 | 0.6336 | 0.6180 | 0.6200 | | 0.0029 | 16.0 | 1600 | 2.8701 | 0.675 | 0.6337 | 0.6214 | 0.6233 | | 0.0015 | 17.0 | 1700 | 2.8115 | 0.69 | 0.6475 | 0.6388 | 0.6420 | | 0.0019 | 18.0 | 1800 | 2.9517 | 0.67 | 0.6373 | 0.6276 | 0.6273 | | 0.0013 | 19.0 | 1900 | 2.9633 | 0.67 | 0.6373 | 0.6276 | 0.6273 | | 0.0007 | 20.0 | 2000 | 2.9769 | 0.675 | 0.6433 | 0.6344 | 0.6344 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Tokenizers 0.13.2