--- license: cc-by-4.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 base_model: l3cube-pune/hing-mbert model-index: - name: hing-mbert-ours-run-1 results: [] --- # hing-mbert-ours-run-1 This model is a fine-tuned version of [l3cube-pune/hing-mbert](https://huggingface.co./l3cube-pune/hing-mbert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.9965 - Accuracy: 0.665 - Precision: 0.6151 - Recall: 0.6082 - F1: 0.6090 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.9757 | 1.0 | 100 | 0.7526 | 0.665 | 0.6358 | 0.6149 | 0.5854 | | 0.7227 | 2.0 | 200 | 1.1062 | 0.69 | 0.6679 | 0.6031 | 0.6025 | | 0.4345 | 3.0 | 300 | 1.2601 | 0.67 | 0.6512 | 0.6031 | 0.6001 | | 0.2738 | 4.0 | 400 | 1.4485 | 0.67 | 0.6333 | 0.5968 | 0.6050 | | 0.1171 | 5.0 | 500 | 1.9132 | 0.65 | 0.6216 | 0.6170 | 0.5944 | | 0.0941 | 6.0 | 600 | 1.8293 | 0.685 | 0.6420 | 0.6439 | 0.6409 | | 0.0348 | 7.0 | 700 | 2.3249 | 0.675 | 0.6424 | 0.6386 | 0.6384 | | 0.0317 | 8.0 | 800 | 2.4134 | 0.67 | 0.6171 | 0.6120 | 0.6128 | | 0.0056 | 9.0 | 900 | 2.6733 | 0.68 | 0.6343 | 0.6313 | 0.6300 | | 0.0095 | 10.0 | 1000 | 2.5950 | 0.685 | 0.6318 | 0.6289 | 0.6295 | | 0.0081 | 11.0 | 1100 | 2.3885 | 0.69 | 0.6407 | 0.6434 | 0.6410 | | 0.023 | 12.0 | 1200 | 2.4087 | 0.67 | 0.6206 | 0.6231 | 0.6212 | | 0.0054 | 13.0 | 1300 | 2.4516 | 0.675 | 0.6229 | 0.6227 | 0.6128 | | 0.0047 | 14.0 | 1400 | 2.6152 | 0.68 | 0.6285 | 0.6256 | 0.6263 | | 0.0063 | 15.0 | 1500 | 2.8077 | 0.69 | 0.6498 | 0.6281 | 0.6309 | | 0.0028 | 16.0 | 1600 | 2.7084 | 0.675 | 0.6254 | 0.6214 | 0.6207 | | 0.0025 | 17.0 | 1700 | 2.8360 | 0.67 | 0.6175 | 0.6128 | 0.6145 | | 0.0011 | 18.0 | 1800 | 2.8591 | 0.655 | 0.6001 | 0.5958 | 0.5971 | | 0.0005 | 19.0 | 1900 | 2.9419 | 0.665 | 0.6151 | 0.6082 | 0.6090 | | 0.0002 | 20.0 | 2000 | 2.9965 | 0.665 | 0.6151 | 0.6082 | 0.6090 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Tokenizers 0.13.2