update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: albert-base-ours-run-3
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# albert-base-ours-run-3
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 2.4381
|
23 |
+
- Accuracy: 0.7
|
24 |
+
- Precision: 0.6579
|
25 |
+
- Recall: 0.6558
|
26 |
+
- F1: 0.6568
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 1e-05
|
46 |
+
- train_batch_size: 8
|
47 |
+
- eval_batch_size: 8
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 20
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
57 |
+
| 0.9876 | 1.0 | 200 | 0.9367 | 0.64 | 0.6707 | 0.5623 | 0.5425 |
|
58 |
+
| 0.7553 | 2.0 | 400 | 0.7936 | 0.66 | 0.6269 | 0.6298 | 0.6105 |
|
59 |
+
| 0.556 | 3.0 | 600 | 0.9257 | 0.71 | 0.6759 | 0.6504 | 0.6563 |
|
60 |
+
| 0.3871 | 4.0 | 800 | 0.9893 | 0.63 | 0.5882 | 0.5985 | 0.5876 |
|
61 |
+
| 0.2446 | 5.0 | 1000 | 1.1867 | 0.695 | 0.6582 | 0.6563 | 0.6566 |
|
62 |
+
| 0.1502 | 6.0 | 1200 | 1.6108 | 0.71 | 0.6708 | 0.6523 | 0.6585 |
|
63 |
+
| 0.1049 | 7.0 | 1400 | 2.4882 | 0.645 | 0.6030 | 0.5597 | 0.5649 |
|
64 |
+
| 0.0764 | 8.0 | 1600 | 2.0064 | 0.715 | 0.6798 | 0.6602 | 0.6651 |
|
65 |
+
| 0.032 | 9.0 | 1800 | 2.6447 | 0.655 | 0.5913 | 0.5774 | 0.5727 |
|
66 |
+
| 0.0177 | 10.0 | 2000 | 2.2460 | 0.675 | 0.6290 | 0.6287 | 0.6287 |
|
67 |
+
| 0.0153 | 11.0 | 2200 | 2.3537 | 0.69 | 0.6524 | 0.6407 | 0.6408 |
|
68 |
+
| 0.006 | 12.0 | 2400 | 2.4205 | 0.695 | 0.6582 | 0.6448 | 0.6486 |
|
69 |
+
| 0.0045 | 13.0 | 2600 | 2.3032 | 0.68 | 0.6394 | 0.6314 | 0.6287 |
|
70 |
+
| 0.0038 | 14.0 | 2800 | 2.3506 | 0.685 | 0.6388 | 0.6370 | 0.6367 |
|
71 |
+
| 0.0034 | 15.0 | 3000 | 2.3750 | 0.7 | 0.6590 | 0.6558 | 0.6573 |
|
72 |
+
| 0.0019 | 16.0 | 3200 | 2.4289 | 0.72 | 0.6819 | 0.6723 | 0.6763 |
|
73 |
+
| 0.0016 | 17.0 | 3400 | 2.4470 | 0.725 | 0.6892 | 0.6788 | 0.6830 |
|
74 |
+
| 0.0002 | 18.0 | 3600 | 2.4374 | 0.71 | 0.6700 | 0.6626 | 0.6657 |
|
75 |
+
| 0.0002 | 19.0 | 3800 | 2.4353 | 0.7 | 0.6579 | 0.6558 | 0.6568 |
|
76 |
+
| 0.0002 | 20.0 | 4000 | 2.4381 | 0.7 | 0.6579 | 0.6558 | 0.6568 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.25.1
|
82 |
+
- Pytorch 1.13.0+cu116
|
83 |
+
- Tokenizers 0.13.2
|