File size: 3,254 Bytes
ea86f89 93e2b28 ea86f89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
base_model: albert-base-v2
model-index:
- name: albert-base-ours-run-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# albert-base-ours-run-2
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co./albert-base-v2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2462
- Accuracy: 0.695
- Precision: 0.6550
- Recall: 0.6529
- F1: 0.6539
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.999 | 1.0 | 200 | 0.9155 | 0.615 | 0.5590 | 0.5590 | 0.5524 |
| 0.7736 | 2.0 | 400 | 0.8488 | 0.6 | 0.5639 | 0.5689 | 0.5256 |
| 0.5836 | 3.0 | 600 | 0.8760 | 0.67 | 0.6259 | 0.6158 | 0.6191 |
| 0.4153 | 4.0 | 800 | 1.0050 | 0.675 | 0.6356 | 0.6212 | 0.5974 |
| 0.3188 | 5.0 | 1000 | 1.2033 | 0.655 | 0.6254 | 0.5977 | 0.5991 |
| 0.2335 | 6.0 | 1200 | 1.3407 | 0.625 | 0.5955 | 0.6039 | 0.5937 |
| 0.1752 | 7.0 | 1400 | 1.4246 | 0.72 | 0.6846 | 0.6815 | 0.6820 |
| 0.1056 | 8.0 | 1600 | 1.9654 | 0.69 | 0.6589 | 0.6251 | 0.6311 |
| 0.0696 | 9.0 | 1800 | 1.9376 | 0.715 | 0.6908 | 0.6632 | 0.6627 |
| 0.0352 | 10.0 | 2000 | 1.9970 | 0.72 | 0.6880 | 0.6784 | 0.6817 |
| 0.0227 | 11.0 | 2200 | 2.1449 | 0.705 | 0.6901 | 0.6641 | 0.6679 |
| 0.0199 | 12.0 | 2400 | 2.2213 | 0.72 | 0.6891 | 0.6685 | 0.6749 |
| 0.0077 | 13.0 | 2600 | 2.1500 | 0.69 | 0.6729 | 0.6704 | 0.6647 |
| 0.0067 | 14.0 | 2800 | 2.1780 | 0.69 | 0.6632 | 0.6651 | 0.6621 |
| 0.0034 | 15.0 | 3000 | 2.1759 | 0.71 | 0.6800 | 0.6786 | 0.6788 |
| 0.0013 | 16.0 | 3200 | 2.2139 | 0.71 | 0.6760 | 0.6721 | 0.6735 |
| 0.0005 | 17.0 | 3400 | 2.2282 | 0.7 | 0.6606 | 0.6593 | 0.6599 |
| 0.0003 | 18.0 | 3600 | 2.2257 | 0.7 | 0.6606 | 0.6593 | 0.6599 |
| 0.0003 | 19.0 | 3800 | 2.2492 | 0.695 | 0.6550 | 0.6529 | 0.6539 |
| 0.0002 | 20.0 | 4000 | 2.2462 | 0.695 | 0.6550 | 0.6529 | 0.6539 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Tokenizers 0.13.2
|