File size: 1,812 Bytes
44984e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: mit
library_name: peft
tags:
- generated_from_trainer
base_model: facebook/bart-large-cnn
datasets:
- samsum
model-index:
- name: bart-cnn-samsum-peft
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-cnn-samsum-peft

This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5166

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.9416        | 1.0   | 37   | 0.7712          |
| 0.6612        | 2.0   | 74   | 0.6450          |
| 0.5657        | 3.0   | 111  | 0.5918          |
| 0.5758        | 4.0   | 148  | 0.5598          |
| 0.499         | 5.0   | 185  | 0.5426          |
| 0.4521        | 6.0   | 222  | 0.5314          |
| 0.4618        | 7.0   | 259  | 0.5244          |
| 0.4838        | 8.0   | 296  | 0.5202          |
| 0.4983        | 9.0   | 333  | 0.5175          |
| 0.4688        | 10.0  | 370  | 0.5166          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1