|
from transformers.pipelines import PIPELINE_REGISTRY |
|
from transformers import Pipeline, AutoModelForImageClassification |
|
import torch |
|
from PIL import Image |
|
import cv2 |
|
from pytorch_grad_cam import GradCAM |
|
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget |
|
from pytorch_grad_cam.utils.image import show_cam_on_image |
|
from facenet_pytorch import MTCNN |
|
import torch.nn.functional as F |
|
|
|
class DeepFakePipeline(Pipeline): |
|
def __init__(self,**kwargs): |
|
Pipeline.__init__(self,**kwargs) |
|
def _sanitize_parameters(self, **kwargs): |
|
return {}, {}, {} |
|
def preprocess(self, inputs): |
|
return inputs |
|
def _forward(self,input): |
|
return input |
|
def postprocess(self,confidences,face_with_mask): |
|
out = {"confidences":confidences, |
|
"face_with_mask": face_with_mask} |
|
return out |
|
|
|
def predict(self,input_image:str): |
|
DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu' |
|
mtcnn = MTCNN( |
|
select_largest=False, |
|
post_process=False, |
|
device=DEVICE) |
|
mtcnn.to(DEVICE) |
|
model = self.model.model |
|
model.to(DEVICE) |
|
|
|
input_image = Image.open(input_image) |
|
face = mtcnn(input_image) |
|
if face is None: |
|
raise Exception('No face detected') |
|
|
|
face = face.unsqueeze(0) |
|
face = F.interpolate(face, size=(256, 256), mode='bilinear', align_corners=False) |
|
|
|
|
|
prev_face = face.squeeze(0).permute(1, 2, 0).cpu().detach().int().numpy() |
|
prev_face = prev_face.astype('uint8') |
|
|
|
face = face.to(DEVICE) |
|
face = face.to(torch.float32) |
|
face = face / 255.0 |
|
face_image_to_plot = face.squeeze(0).permute(1, 2, 0).cpu().detach().int().numpy() |
|
|
|
target_layers=[model.block8.branch1[-1]] |
|
cam = GradCAM(model=model, target_layers=target_layers) |
|
targets = [ClassifierOutputTarget(0)] |
|
grayscale_cam = cam(input_tensor=face, targets=targets,eigen_smooth=True) |
|
grayscale_cam = grayscale_cam[0, :] |
|
visualization = show_cam_on_image(face_image_to_plot, grayscale_cam, use_rgb=True) |
|
face_with_mask = cv2.addWeighted(prev_face, 1, visualization, 0.5, 0) |
|
|
|
with torch.no_grad(): |
|
output = torch.sigmoid(model(face).squeeze(0)) |
|
prediction = "real" if output.item() < 0.5 else "fake" |
|
|
|
real_prediction = 1 - output.item() |
|
fake_prediction = output.item() |
|
|
|
confidences = { |
|
'real': real_prediction, |
|
'fake': fake_prediction |
|
} |
|
return self.postprocess(confidences, face_with_mask) |