File size: 2,437 Bytes
74d460d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: google/flan-t5-large
metrics:
- rouge
model-index:
- name: absa_10_domains_large
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# absa_10_domains_large
This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co./google/flan-t5-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Rouge1: 0.0
- Rouge2: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 |
|:---------------------------------------:|:------:|:----:|:---------------:|:------:|:------:|
| 9447968943581024006218927935848448.0000 | 0.9981 | 300 | nan | 0.0 | 0.0 |
| 0.0 | 1.9996 | 601 | nan | 0.0 | 0.0 |
| 0.0 | 2.9977 | 901 | nan | 0.0 | 0.0 |
| 0.0 | 3.9992 | 1202 | nan | 0.0 | 0.0 |
| 0.0 | 4.9973 | 1502 | nan | 0.0 | 0.0 |
| 0.0 | 5.9988 | 1803 | nan | 0.0 | 0.0 |
| 0.0 | 6.9969 | 2103 | nan | 0.0 | 0.0 |
| 0.0 | 7.9983 | 2404 | nan | 0.0 | 0.0 |
| 0.0 | 8.9998 | 2705 | nan | 0.0 | 0.0 |
| 0.0 | 9.9813 | 3000 | nan | 0.0 | 0.0 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.40.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1 |