|
from torch import nn |
|
from transformers import BertModel,BertConfig |
|
from transformers.modeling_outputs import TokenClassifierOutput |
|
|
|
|
|
class BertClassifier(nn.Module): |
|
def __init__(self, num_labels=2, dropout=0.1,bert_model=None): |
|
super().__init__() |
|
if bert_model: |
|
self.bert = BertModel.from_pretrained(bert_model) |
|
else: |
|
config = BertConfig(vocab_size=34688, max_position_embeddings=512) |
|
self.bert = BertModel(config=config) |
|
|
|
self.num_labels = num_labels |
|
self.classifier = nn.Sequential( |
|
nn.Linear(self.bert.config.hidden_size, self.bert.config.hidden_size), |
|
nn.ReLU(), |
|
nn.Dropout(dropout), |
|
nn.Linear(self.bert.config.hidden_size, num_labels)) |
|
|
|
def forward(self, input_ids=None, attention_mask=None,labels=None): |
|
output = self.bert(input_ids, attention_mask=attention_mask) |
|
logits = self.classifier(output.pooler_output) |
|
loss = None |
|
if labels: |
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
return TokenClassifierOutput(loss=loss, logits=logits, hidden_states=output.hidden_states,attentions=output.attentions) |
|
|