File size: 1,835 Bytes
2f4a74c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8df041d
 
 
 
 
 
2f4a74c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8df041d
2f4a74c
 
 
8df041d
2f4a74c
 
 
 
 
 
 
 
8df041d
 
 
2f4a74c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: InstructTweetSummarizer
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# InstructTweetSummarizer

This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3548
- Rouge1: 47.5134
- Rouge2: 24.7121
- Rougel: 35.7366
- Rougelsum: 35.6499
- Gen Len: 111.96

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 6
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log        | 1.0   | 417  | 0.3468          | 44.9326 | 22.3736 | 33.008  | 32.9247   | 116.43  |
| 0.5244        | 2.0   | 834  | 0.3440          | 46.9139 | 24.683  | 35.3699 | 35.333    | 119.65  |
| 0.2061        | 3.0   | 1251 | 0.3548          | 47.5134 | 24.7121 | 35.7366 | 35.6499   | 111.96  |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0
- Datasets 2.14.7
- Tokenizers 0.14.1