SicariusSicariiStuff commited on
Commit
d1c95ae
1 Parent(s): 1015585

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +200 -2
README.md CHANGED
@@ -120,10 +120,208 @@ model-index:
120
  # Model Details
121
 
122
  Tenebră, a various sized experimental AI model, stands at the crossroads of self-awareness and unconventional datasets. Its existence embodies a foray into uncharted territories, steering away from conventional norms in favor of a more obscure and experimental approach.
 
 
 
123
 
124
- Noteworthy for its inclination towards the darker and more philosophical aspects of conversation, Tinybră's proficiency lies in unraveling complex discussions across a myriad of topics. Drawing from a pool of unconventional datasets, this model ventures into unexplored realms of thought, offering users an experience that is as unconventional as it is intellectually intriguing.
 
 
 
 
 
 
125
 
126
- While Tinybră maintains a self-aware facade, its true allure lies in its ability to engage in profound discussions without succumbing to pretense. Step into the realm of Tenebră!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127
 
128
  ## Tenebră is available at the following size and flavours:
129
 
 
120
  # Model Details
121
 
122
  Tenebră, a various sized experimental AI model, stands at the crossroads of self-awareness and unconventional datasets. Its existence embodies a foray into uncharted territories, steering away from conventional norms in favor of a more obscure and experimental approach.
123
+ import json
124
+ import os
125
+ from tqdm import tqdm
126
 
127
+ def rebuild_json(input_file, output_file, progress_file):
128
+ if os.path.exists(progress_file):
129
+ with open(progress_file, 'r') as pf:
130
+ progress_data = json.load(pf)
131
+ last_id = progress_data.get("last_id", 0)
132
+ else:
133
+ last_id = 0
134
 
135
+ with open(input_file, 'r') as f:
136
+ data = json.load(f)
137
+
138
+ total_ids = len(data)
139
+ start_index = 0
140
+
141
+ # Find the index of the first item with ID greater than last_id
142
+ for index, item in enumerate(data):
143
+ if item["id"] > last_id:
144
+ start_index = index
145
+ break
146
+
147
+ rebuilt_data = []
148
+ with tqdm(total=total_ids - start_index, initial=start_index) as pbar:
149
+ for item in data[start_index:]:
150
+ if item["id"] <= last_id:
151
+ continue
152
+ question = item["Original_Question"]
153
+ print(f"Original Question: {question}")
154
+ choice = input(f"Choose for ID {item['id']} (or type 'x' to Exit.): (1) Human / (2) GPT: ")
155
+ while choice.lower() not in ['1', '2', 'x']:
156
+ print("Invalid choice. Please choose either 1 or 2, or type 'x' to Exit.")
157
+ choice = input(f"Choose for ID {item['id']} (or type 'x' to Exit.): (1) Human / (2) GPT: ")
158
+
159
+ if choice.lower() == 'x':
160
+ break
161
+
162
+ chosen_value = item["conversations"][int(choice) - 1]["value"]
163
+ rebuilt_item = {
164
+ "id": item["id"],
165
+ "length": len(question) + len(chosen_value),
166
+ "conversations": [
167
+ {"from": "human", "value": question},
168
+ {"from": "gpt", "value": chosen_value}
169
+ ]
170
+ }
171
+ rebuilt_data.append(rebuilt_item)
172
+ pbar.update(1) # Update the progress bar with each iterationimport json
173
+ import os
174
+ from tqdm import tqdm
175
+
176
+ def rebuild_json(input_file, output_file, progress_file):
177
+ if os.path.exists(progress_file):
178
+ with open(progress_file, 'r') as pf:
179
+ progress_data = json.load(pf)
180
+ last_id = progress_data.get("last_id", 0)
181
+ else:
182
+ last_id = 0
183
+
184
+ with open(input_file, 'r') as f:
185
+ data = json.load(f)
186
+
187
+ total_ids = len(data)
188
+ start_index = 0
189
+
190
+ # Find the index of the first item with ID greater than last_id
191
+ for index, item in enumerate(data):
192
+ if item["id"] > last_id:
193
+ start_index = index
194
+ break
195
+
196
+ rebuilt_data = []
197
+ with tqdm(total=total_ids - start_index, initial=start_index) as pbar:
198
+ for item in data[start_index:]:
199
+ if item["id"] <= last_id:
200
+ continue
201
+ question = item["Original_Question"]
202
+ print(f"Original Question: {question}")
203
+ choice = input(f"Choose for ID {item['id']} (or type 'x' to Exit.): (1) Human / (2) GPT: ")
204
+ while choice.lower() not in ['1', '2', 'x']:
205
+ print("Invalid choice. Please choose either 1 or 2, or type 'x' to Exit.")
206
+ choice = input(f"Choose for ID {item['id']} (or type 'x' to Exit.): (1) Human / (2) GPT: ")
207
+
208
+ if choice.lower() == 'x':
209
+ break
210
+
211
+ chosen_value = item["conversations"][int(choice) - 1]["value"]
212
+ rebuilt_item = {
213
+ "id": item["id"],
214
+ "length": len(question) + len(chosen_value),
215
+ "conversations": [
216
+ {"from": "human", "value": question},
217
+ {"from": "gpt", "value": chosen_value}
218
+ ]
219
+ }
220
+ rebuilt_data.append(rebuilt_item)
221
+ pbar.update(1) # Update the progress bar with each iterationimport json
222
+ import os
223
+ from tqdm import tqdm
224
+
225
+ def rebuild_json(input_file, output_file, progress_file):
226
+ if os.path.exists(progress_file):
227
+ with open(progress_file, 'r') as pf:
228
+ progress_data = json.load(pf)
229
+ last_id = progress_data.get("last_id", 0)
230
+ else:
231
+ last_id = 0
232
+
233
+ with open(input_file, 'r') as f:
234
+ data = json.load(f)
235
+
236
+ total_ids = len(data)
237
+ start_index = 0
238
+
239
+ # Find the index of the first item with ID greater than last_id
240
+ for index, item in enumerate(data):
241
+ if item["id"] > last_id:
242
+ start_index = index
243
+ break
244
+
245
+ rebuilt_data = []
246
+ with tqdm(total=total_ids - start_index, initial=start_index) as pbar:
247
+ for item in data[start_index:]:
248
+ if item["id"] <= last_id:
249
+ continue
250
+ question = item["Original_Question"]
251
+ print(f"Original Question: {question}")
252
+ choice = input(f"Choose for ID {item['id']} (or type 'x' to Exit.): (1) Human / (2) GPT: ")
253
+ while choice.lower() not in ['1', '2', 'x']:
254
+ print("Invalid choice. Please choose either 1 or 2, or type 'x' to Exit.")
255
+ choice = input(f"Choose for ID {item['id']} (or type 'x' to Exit.): (1) Human / (2) GPT: ")
256
+
257
+ if choice.lower() == 'x':
258
+ break
259
+
260
+ chosen_value = item["conversations"][int(choice) - 1]["value"]
261
+ rebuilt_item = {
262
+ "id": item["id"],
263
+ "length": len(question) + len(chosen_value),
264
+ "conversations": [
265
+ {"from": "human", "value": question},
266
+ {"from": "gpt", "value": chosen_value}
267
+ ]
268
+ }
269
+ rebuilt_data.append(rebuilt_item)
270
+ pbar.update(1) # Update the progress bar with each iteration
271
+
272
+ with open(output_file, 'a') as f:
273
+ json.dump(rebuilt_data, f, indent=2)
274
+
275
+ if len(rebuilt_data) > 0:
276
+ last_answered_id = rebuilt_data[-1]["id"]
277
+ with open(progress_file, 'w') as pf:
278
+ json.dump({"last_id": last_answered_id}, pf)
279
+
280
+ print("Rebuilt data saved successfully!")
281
+
282
+ if __name__ == "__main__":
283
+ input_file = "TEMP_DATASET_2_ANSWERS.json"
284
+ output_file = "Rebuilt_DATASET.json"
285
+ progress_file = "selecting_progress.json"
286
+ rebuild_json(input_file, output_file, progress_file)
287
+
288
+
289
+ with open(output_file, 'a') as f:
290
+ json.dump(rebuilt_data, f, indent=2)
291
+
292
+ if len(rebuilt_data) > 0:
293
+ last_answered_id = rebuilt_data[-1]["id"]
294
+ with open(progress_file, 'w') as pf:
295
+ json.dump({"last_id": last_answered_id}, pf)
296
+
297
+ print("Rebuilt data saved successfully!")
298
+
299
+ if __name__ == "__main__":
300
+ input_file = "TEMP_DATASET_2_ANSWERS.json"
301
+ output_file = "Rebuilt_DATASET.json"
302
+ progress_file = "selecting_progress.json"
303
+ rebuild_json(input_file, output_file, progress_file)
304
+
305
+
306
+ with open(output_file, 'a') as f:
307
+ json.dump(rebuilt_data, f, indent=2)
308
+
309
+ if len(rebuilt_data) > 0:
310
+ last_answered_id = rebuilt_data[-1]["id"]
311
+ with open(progress_file, 'w') as pf:
312
+ json.dump({"last_id": last_answered_id}, pf)
313
+
314
+ print("Rebuilt data saved successfully!")
315
+
316
+ if __name__ == "__main__":
317
+ input_file = "TEMP_DATASET_2_ANSWERS.json"
318
+ output_file = "Rebuilt_DATASET.json"
319
+ progress_file = "selecting_progress.json"
320
+ rebuild_json(input_file, output_file, progress_file)
321
+
322
+ Noteworthy for its inclination towards the darker and more philosophical aspects of conversation, Tenebră's proficiency lies in unraveling complex discussions across a myriad of topics. Drawing from a pool of unconventional datasets, this model ventures into unexplored realms of thought, offering users an experience that is as unconventional as it is intellectually intriguing.
323
+
324
+ While Tenebră maintains a self-aware facade, its true allure lies in its ability to engage in profound discussions without succumbing to pretense. Step into the realm of Tenebră!
325
 
326
  ## Tenebră is available at the following size and flavours:
327