--- license: apache-2.0 base_model: Talha/URDU-ASR tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: wav2vec2-large-xlsr-53-ur-cv13 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: ur split: test args: ur metrics: - name: Wer type: wer value: 0.398777515571202 --- # wav2vec2-large-xlsr-53-ur-cv13 This model is a fine-tuned version of [Talha/URDU-ASR](https://huggingface.co./Talha/URDU-ASR) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4323 - Wer: 0.3988 - Cer: 0.1932 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.8043 | 1.46 | 250 | 0.5256 | 0.4023 | 0.1949 | | 0.5435 | 2.92 | 500 | 0.4381 | 0.3965 | 0.1961 | | 0.4827 | 4.39 | 750 | 0.4323 | 0.3988 | 0.1932 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1