File size: 2,145 Bytes
7c7db62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: training-8
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# training-8

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0308
- Accuracy: 0.995
- Precision: 0.9955
- Recall: 0.9844
- F1: 0.9899

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log        | 0.5   | 262  | 0.0687          | 0.9872   | 0.9755    | 0.9733 | 0.9744 |
| No log        | 1.0   | 524  | 0.0501          | 0.9906   | 0.9977    | 0.9644 | 0.9808 |
| 0.1015        | 1.5   | 786  | 0.0465          | 0.9928   | 0.9955    | 0.9756 | 0.9854 |
| 0.1015        | 2.0   | 1048 | 0.0440          | 0.9906   | 0.9932    | 0.9689 | 0.9809 |
| 0.0372        | 2.5   | 1310 | 0.0399          | 0.9922   | 0.9955    | 0.9733 | 0.9843 |
| 0.0372        | 2.99  | 1572 | 0.0298          | 0.995    | 0.9955    | 0.9844 | 0.9899 |
| 0.0131        | 3.49  | 1834 | 0.0312          | 0.995    | 0.9955    | 0.9844 | 0.9899 |
| 0.0131        | 3.99  | 2096 | 0.0308          | 0.995    | 0.9955    | 0.9844 | 0.9899 |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.2.0.dev20230913+cu121
- Tokenizers 0.13.3