--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: training-6 results: [] --- # training-6 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0431 - Accuracy: 0.9923 - Precision: 0.9942 - Recall: 0.9752 - F1: 0.9846 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 0.5 | 302 | 0.0633 | 0.9894 | 0.9980 | 0.9599 | 0.9786 | | No log | 1.0 | 604 | 0.0501 | 0.9846 | 0.9713 | 0.9676 | 0.9694 | | 0.0875 | 1.5 | 906 | 0.0621 | 0.9899 | 0.9980 | 0.9618 | 0.9796 | | 0.0875 | 2.0 | 1208 | 0.0420 | 0.9928 | 0.9961 | 0.9752 | 0.9855 | | 0.0269 | 2.5 | 1510 | 0.0509 | 0.9923 | 0.9980 | 0.9714 | 0.9845 | | 0.0269 | 3.0 | 1812 | 0.0456 | 0.9932 | 1.0 | 0.9733 | 0.9865 | | 0.0159 | 3.49 | 2114 | 0.0452 | 0.9937 | 1.0 | 0.9752 | 0.9874 | | 0.0159 | 3.99 | 2416 | 0.0431 | 0.9923 | 0.9942 | 0.9752 | 0.9846 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.2.0.dev20230913+cu121 - Tokenizers 0.13.3