--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: training-1 results: [] --- # training-1 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0188 - Accuracy: 0.9957 - Precision: 0.9979 - Recall: 0.9936 - F1: 0.9957 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 0.99 | 175 | 0.0323 | 0.9925 | 1.0 | 0.9850 | 0.9925 | | 0.1307 | 1.99 | 350 | 0.0291 | 0.9936 | 1.0 | 0.9872 | 0.9935 | | 0.0299 | 2.98 | 525 | 0.0201 | 0.9957 | 0.9979 | 0.9936 | 0.9957 | | 0.024 | 3.98 | 700 | 0.0188 | 0.9957 | 0.9979 | 0.9936 | 0.9957 | | 0.0183 | 4.97 | 875 | 0.0188 | 0.9957 | 0.9979 | 0.9936 | 0.9957 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.2.0.dev20230913+cu121 - Tokenizers 0.13.3