--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: distilbert-training-3 results: [] --- # distilbert-training-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0197 - Accuracy: 0.9956 - Precision: 1.0 - Recall: 0.9910 - F1: 0.9955 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 0.5 | 131 | 0.1115 | 0.97 | 0.9976 | 0.9413 | 0.9686 | | No log | 1.0 | 262 | 0.0659 | 0.9844 | 1.0 | 0.9684 | 0.9839 | | 0.1414 | 1.49 | 393 | 0.0632 | 0.9878 | 1.0 | 0.9752 | 0.9874 | | 0.1414 | 1.99 | 524 | 0.0795 | 0.9822 | 1.0 | 0.9639 | 0.9816 | | 0.0512 | 2.49 | 655 | 0.0542 | 0.9878 | 1.0 | 0.9752 | 0.9874 | | 0.0512 | 2.99 | 786 | 0.0199 | 0.9944 | 1.0 | 0.9887 | 0.9943 | | 0.0246 | 3.49 | 917 | 0.0202 | 0.9944 | 1.0 | 0.9887 | 0.9943 | | 0.0246 | 3.98 | 1048 | 0.0197 | 0.9956 | 1.0 | 0.9910 | 0.9955 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.2.0.dev20230913+cu121 - Tokenizers 0.13.3