Shariar433 commited on
Commit
b1d0e63
·
1 Parent(s): 2713b80

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -13
README.md CHANGED
@@ -1,5 +1,6 @@
1
  ---
2
  license: apache-2.0
 
3
  tags:
4
  - generated_from_trainer
5
  datasets:
@@ -24,16 +25,16 @@ model-index:
24
  metrics:
25
  - name: Precision
26
  type: precision
27
- value: 0.9377799900447984
28
  - name: Recall
29
  type: recall
30
- value: 0.9511948838774823
31
  - name: F1
32
  type: f1
33
- value: 0.9444398028239619
34
  - name: Accuracy
35
  type: accuracy
36
- value: 0.9862689115205746
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,10 +44,10 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.0610
47
- - Precision: 0.9378
48
- - Recall: 0.9512
49
- - F1: 0.9444
50
  - Accuracy: 0.9863
51
 
52
  ## Model description
@@ -78,14 +79,14 @@ The following hyperparameters were used during training:
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
- | 0.0874 | 1.0 | 1756 | 0.0679 | 0.9211 | 0.9329 | 0.9269 | 0.9822 |
82
- | 0.0329 | 2.0 | 3512 | 0.0620 | 0.9372 | 0.9520 | 0.9446 | 0.9868 |
83
- | 0.0184 | 3.0 | 5268 | 0.0610 | 0.9378 | 0.9512 | 0.9444 | 0.9863 |
84
 
85
 
86
  ### Framework versions
87
 
88
- - Transformers 4.29.2
89
  - Pytorch 2.0.1+cu118
90
- - Datasets 2.12.0
91
  - Tokenizers 0.13.3
 
1
  ---
2
  license: apache-2.0
3
+ base_model: bert-base-cased
4
  tags:
5
  - generated_from_trainer
6
  datasets:
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.9314955430835259
29
  - name: Recall
30
  type: recall
31
+ value: 0.9496802423426456
32
  - name: F1
33
  type: f1
34
+ value: 0.9404999999999999
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9862836286572084
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.0581
48
+ - Precision: 0.9315
49
+ - Recall: 0.9497
50
+ - F1: 0.9405
51
  - Accuracy: 0.9863
52
 
53
  ## Model description
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.0768 | 1.0 | 1756 | 0.0701 | 0.9052 | 0.9332 | 0.9190 | 0.9804 |
83
+ | 0.04 | 2.0 | 3512 | 0.0557 | 0.9277 | 0.9483 | 0.9379 | 0.9862 |
84
+ | 0.0258 | 3.0 | 5268 | 0.0581 | 0.9315 | 0.9497 | 0.9405 | 0.9863 |
85
 
86
 
87
  ### Framework versions
88
 
89
+ - Transformers 4.31.0
90
  - Pytorch 2.0.1+cu118
91
+ - Datasets 2.14.4
92
  - Tokenizers 0.13.3