File size: 1,655 Bytes
ba7bc8c
7598cc1
ba7bc8c
 
 
 
 
 
 
 
 
 
 
 
 
 
cdb30df
ba7bc8c
 
 
 
 
 
 
7598cc1
 
 
 
ba7bc8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faae55a
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
pipeline_tag: image-text-to-text
inference: false
license: apache-2.0
---

<br>
<br>

# LLaVA-Hound Model Card

## Model details

**Model type:**
LLaVA-Hound is an open-source video large multimodal model, fine-tuned from video instruction following data based on large language model. 

This model is the **SFT** version on **image and video instruction dataset** trained from **ShareGPTVideo/LLaVA-Hound-Pretrain**.

Base LLM: [lmsys/vicuna-7b-v1.5](https://huggingface.co./lmsys/vicuna-7b-v1.5)

**Model date:**
Trained on March 15, 2024.

**Paper or resources for more information:**

Paper: https://huggingface.co./papers/2404.01258

Code: https://github.com/RifleZhang/LLaVA-Hound-DPO

## License
[lmsys/vicuna-7b-v1.5](https://huggingface.co./lmsys/vicuna-7b-v1.5) license.

**Where to send questions or comments about the model:**
https://github.com/RifleZhang/LLaVA-Hound-DPO/issues

## Intended use
**Primary intended uses:**
Video (image) instruction-following.

**Primary intended users:**
Researchers in artificial intelligence, large multimodal model, etc.

## Training dataset
ShareGPTVideo dataset.

## Evaluation
Follow https://github.com/RifleZhang/LLaVA-Hound-DPO/blob/main/README.md

## Paper

https://huggingface.co./papers/2404.01258

citation
```
@article{zhang2024direct,
  title={Direct Preference Optimization of Video Large Multimodal Models from Language Model Reward},
  author={Zhang, Ruohong and Gui, Liangke and Sun, Zhiqing and Feng, Yihao and Xu, Keyang and Zhang, Yuanhan and Fu, Di and Li, Chunyuan and Hauptmann, Alexander and Bisk, Yonatan and others},
  journal={arXiv preprint arXiv:2404.01258},
  year={2024}
}
```