File size: 5,294 Bytes
c13f9aa
f3fed70
 
01df22c
 
 
c13f9aa
01df22c
9fabcad
 
34f3f86
9fabcad
 
01df22c
98bf3df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01df22c
98bf3df
 
 
01df22c
98bf3df
 
 
01df22c
 
98bf3df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01df22c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
license: llama3
library_name: xtuner
datasets:
- Lin-Chen/ShareGPT4V
pipeline_tag: image-text-to-text
---

---

**Notice:** This repository hosts the [`xtuner/llava-llama-3-8b-v1_1-hf`](https://huggingface.co./xtuner/llava-llama-3-8b-v1_1-hf) model, which has been specifically modified to address compatibility issues with the pure `transformers` library. The original model configuration and index files have been manually adjusted to ensure seamless integration and functionality with the `transformers` setup. These adjustments have not altered the model weights.

---

## QuickStart

### Chat with lmdeploy

1. Installation
```
pip install 'lmdeploy>=0.4.0'
pip install git+https://github.com/haotian-liu/LLaVA.git
```

2. Run

Running with pure `transformers` library

```python
from transformers import (
    LlavaProcessor,
    LlavaForConditionalGeneration,
)
import torch
from PIL import Image
import requests

MODEL_NAME = "Seungyoun/llava-llama-3-8b-hf"

processor = LlavaProcessor.from_pretrained(MODEL_NAME)
# add 128257 <image> , <pad>
processor.tokenizer.add_tokens(["<|image|>", "<pad>"], special_tokens=True)

model = LlavaForConditionalGeneration.from_pretrained(MODEL_NAME).to("cuda:0")
# resize embeddings
model.resize_token_embeddings(len(processor.tokenizer))


# prepare image and text prompt, using the appropriate prompt template
url = "https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTd4g61TSw890IYKBbPMgXPyWAKdVOpWWUAF0-FGzgX2Q&s"
image = Image.open(requests.get(url, stream=True).raw)
prompt = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions. USER: <|image|>\nWhat is shown in this image? ASSISTANT:" # FIX : Chat template

inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")

# autoregressively complete prompt
output = model.generate(**inputs, max_new_tokens=100)

print(processor.decode(output[0], skip_special_tokens=True))
# What is shown in this image? ASSISTANT: The image shows a heartwarming scene of two dogs sitting together on a couch. The dogs are of different breeds, one being a golden retriever and the other being a tabby cat. The dogs are sitting close together, indicating a strong bond between them. The image captures a beautiful moment of companionship between two different species. sit on couch. golden retriever and tabby cat. dogs are sitting together. companionship between two different species.
```
---

</div>

## Model

llava-llama-3-8b-v1_1-hf is a LLaVA model fine-tuned from [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3-8B-Instruct) and [CLIP-ViT-Large-patch14-336](https://huggingface.co./openai/clip-vit-large-patch14-336) with [ShareGPT4V-PT](https://huggingface.co./datasets/Lin-Chen/ShareGPT4V) and [InternVL-SFT](https://github.com/OpenGVLab/InternVL/tree/main/internvl_chat#prepare-training-datasets) by [XTuner](https://github.com/InternLM/xtuner).


## Details

| Model                 | Visual      Encoder | Projector | Resolution |   Pretraining Strategy | Fine-tuning      Strategy |      Pretrain     Dataset |    Fine-tune     Dataset |
| :-------------------- | ------------------: | --------: | ---------: | ---------------------: | ------------------------: | ------------------------: | -----------------------: |
| LLaVA-v1.5-7B         |              CLIP-L |       MLP |        336 | Frozen LLM, Frozen ViT |      Full LLM, Frozen ViT |       LLaVA-PT     (558K) |     LLaVA-Mix     (665K) |
| LLaVA-Llama-3-8B      |              CLIP-L |       MLP |        336 | Frozen LLM, Frozen ViT |        Full LLM, LoRA ViT |       LLaVA-PT     (558K) |     LLaVA-Mix     (665K) |
| LLaVA-Llama-3-8B-v1.1 |              CLIP-L |       MLP |        336 | Frozen LLM, Frozen ViT |        Full LLM, LoRA ViT | ShareGPT4V-PT     (1246K) | InternVL-SFT     (1268K) |

## Results

<div  align="center">
<img src="https://github.com/InternLM/xtuner/assets/36994684/a157638c-3500-44ed-bfab-d8d8249f91bb" alt="Image" width=500" />
</div>

| Model                 | MMBench Test (EN) | MMBench Test (CN) | CCBench Dev | MMMU  Val | SEED-IMG | AI2D Test | ScienceQA Test | HallusionBench aAcc | POPE | GQA  | TextVQA |   MME    | MMStar |
| :-------------------- | :---------------: | :---------------: | :---------: | :-------: | :------: | :-------: | :------------: | :-----------------: | :--: | :--: | :-----: | :------: | :----: |
| LLaVA-v1.5-7B         |       66.5        |       59.0        |    27.5     |   35.3    |   60.5   |   54.8    |      70.4      |        44.9         | 85.9 | 62.0 |  58.2   | 1511/348 |  30.3  |
| LLaVA-Llama-3-8B      |       68.9        |       61.6        |    30.4     |   36.8    |   69.8   |   60.9    |      73.3      |        47.3         | 87.2 | 63.5 |  58.0   | 1506/295 |  38.2  |
| LLaVA-Llama-3-8B-v1.1 |       72.3        |       66.4        |    31.6     |   36.8    |   70.1   |   70.0    |      72.9      |        47.7         | 86.4 | 62.6 |  59.0   | 1469/349 |  45.1  |



## Citation

```bibtex
@misc{2023xtuner,
    title={XTuner: A Toolkit for Efficiently Fine-tuning LLM},
    author={XTuner Contributors},
    howpublished = {\url{https://github.com/InternLM/xtuner}},
    year={2023}
}
```