--- license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer metrics: - pearsonr - spearmanr model-index: - name: enc_cross_encoder__lr_7e-6__wd_0.1__trans_False__obj_mse__tri_None__s_42 results: [] --- # enc_cross_encoder__lr_7e-6__wd_0.1__trans_False__obj_mse__tri_None__s_42 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co./microsoft/deberta-v3-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0917 - Mse: 0.0917 - Pearsonr: 0.4893 - Spearmanr: 0.4924 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Pearsonr | Spearmanr | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:| | No log | 1.0 | 354 | 0.0982 | 0.0982 | 0.3975 | 0.4064 | | 0.1166 | 2.0 | 709 | 0.0880 | 0.0880 | 0.4867 | 0.4889 | | 0.0903 | 3.0 | 1062 | 0.0917 | 0.0917 | 0.4893 | 0.4924 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.0.1 - Datasets 2.19.1 - Tokenizers 0.15.2