File size: 1,976 Bytes
9964bfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---

base_model: princeton-nlp/sup-simcse-roberta-large
tags:
- generated_from_trainer
metrics:
- pearsonr
- spearmanr
model-index:
- name: enc_bi_encoder__lr_1e-5__wd_0.1__trans_False__obj_mse__tri_None__s_42
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# enc_bi_encoder__lr_1e-5__wd_0.1__trans_False__obj_mse__tri_None__s_42



This model is a fine-tuned version of [princeton-nlp/sup-simcse-roberta-large](https://huggingface.co./princeton-nlp/sup-simcse-roberta-large) on an unknown dataset.

It achieves the following results on the evaluation set:

- Loss: 0.0951

- Mse: 0.0951

- Pearsonr: 0.4802

- Spearmanr: 0.4799



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 1e-05

- train_batch_size: 8

- eval_batch_size: 8

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 32

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- lr_scheduler_warmup_ratio: 0.1

- num_epochs: 3.0

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch | Step | Validation Loss | Mse    | Pearsonr | Spearmanr |

|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:|

| No log        | 1.0   | 354  | 0.0973          | 0.0973 | 0.4643   | 0.4659    |

| 0.0949        | 2.0   | 709  | 0.0964          | 0.0964 | 0.4691   | 0.4692    |

| 0.0785        | 3.0   | 1062 | 0.0951          | 0.0951 | 0.4802   | 0.4799    |





### Framework versions



- Transformers 4.37.2

- Pytorch 2.0.1

- Datasets 2.18.0

- Tokenizers 0.15.1