File size: 3,393 Bytes
3d09dcc a47f8b9 3d09dcc 553cd15 a47f8b9 3d09dcc a47f8b9 3d09dcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
---
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: NousResearch/Llama-2-7b-hf
model-index:
- name: neocortex
results: []
---
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: NousResearch/Llama-2-7b-hf
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
is_llama_derived_model: true
hub_model_id: neocortex
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: SethGA/neocortex
type: alpaca
shards: 20
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./qlora-out
adapter: qlora
lora_model_dir:
sequence_len: 4096
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: neocortex
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model: checkpoint
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
eval_steps: 20
eval_table_size: 5
save_strategy: epoch
save_steps:
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
```
</details><br>
# neocortex
This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co./NousResearch/Llama-2-7b-hf) on the [Neocortex](https://huggingface.co./datasets/SethGA/neocortex) dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4558
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.5181 | 0.29 | 20 | 1.5627 |
| 1.437 | 0.58 | 40 | 1.4861 |
| 1.5196 | 0.87 | 60 | 1.4610 |
| 1.4037 | 1.16 | 80 | 1.4512 |
| 1.372 | 1.45 | 100 | 1.4493 |
| 1.3853 | 1.74 | 120 | 1.4424 |
| 1.2367 | 2.03 | 140 | 1.4460 |
| 1.283 | 2.32 | 160 | 1.4602 |
| 1.2933 | 2.61 | 180 | 1.4583 |
| 1.2397 | 2.9 | 200 | 1.4558 |
### Framework versions
- PEFT 0.8.2
- Transformers 4.38.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.17.0
- Tokenizers 0.15.0 |