# -------------------------------------------------------- # InternVL # Copyright (c) 2023 OpenGVLab # Licensed under The MIT License [see LICENSE for details] # -------------------------------------------------------- import warnings from typing import Any, List, Optional, Tuple, Union import torch.utils.checkpoint # from internvl.model.internlm2.modeling_internlm2 import InternLM2ForCausalLM from .modeling_internlm2 import InternLM2ForCausalLM from peft import LoraConfig, get_peft_model from torch import nn from torch.nn import CrossEntropyLoss from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM, LlamaTokenizer) from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.modeling_utils import PreTrainedModel from transformers.utils import ModelOutput, logging from .configuration_internvl_chat import InternVLChatConfig from .modeling_intern_vit import InternVisionModel logger = logging.get_logger(__name__) class InternVLChatModel(PreTrainedModel): config_class = InternVLChatConfig main_input_name = 'pixel_values' _no_split_modules = ['InternVisionEncoderLayer', 'LlamaDecoderLayer'] def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None): super().__init__(config) image_size = config.force_image_size or config.vision_config.image_size patch_size = config.vision_config.patch_size self.patch_size = patch_size self.select_layer = config.select_layer self.template = config.template self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2)) self.downsample_ratio = config.downsample_ratio self.ps_version = config.ps_version self.block_revise = config.block_revise logger.info(f'num_image_token: {self.num_image_token}') logger.info(f'ps_version: {self.ps_version}') if vision_model is not None: self.vision_model = vision_model else: self.vision_model = InternVisionModel(config.vision_config) if language_model is not None: self.language_model = language_model else: if config.llm_config.architectures[0] == 'LlamaForCausalLM': self.language_model = LlamaForCausalLM(config.llm_config) elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM': self.language_model = InternLM2ForCausalLM(config.llm_config) else: raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.') vit_hidden_size = config.vision_config.hidden_size llm_hidden_size = config.llm_config.hidden_size self.mlp1 = nn.Sequential( nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2), nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size), nn.GELU(), nn.Linear(llm_hidden_size, llm_hidden_size) ) if config.block_position_embedding is not None: max_len = config.block_max_len vit_output_size = vit_hidden_size * int(1 / self.downsample_ratio) ** 2 if config.block_position_embedding == 'v1': self.position_embedding_block_x = nn.Parameter(torch.randn(1, max_len, vit_output_size)) # [block_h, block_w, channel] self.position_embedding_block_y = nn.Parameter(torch.randn(max_len, 1, vit_output_size)) elif config.block_position_embedding == 'v2': position_embedding_blocks_x = torch.zeros(max_len, vit_output_size) position_embedding_blocks_y = torch.zeros(max_len, vit_output_size) position_embedding_blocks_x.requires_grad = False position_embedding_blocks_y.requires_grad = False pos = torch.arange(0, max_len).float().unsqueeze(dim=1) _2i = torch.arange(0, vit_output_size, step=2).float() position_embedding_blocks_x[:, 0::2] = torch.sin(pos / (10000 ** (_2i / vit_output_size))) position_embedding_blocks_x[:, 1::2] = torch.cos(pos / (10000 ** (_2i / vit_output_size))) position_embedding_blocks_y[:, 0::2] = torch.cos(pos / (10000 ** (_2i / vit_output_size))) position_embedding_blocks_y[:, 1::2] = -torch.sin(pos / (10000 ** (_2i / vit_output_size))) self.register_buffer('position_embedding_block_x', position_embedding_blocks_x.view(1, max_len, vit_output_size), persistent=False) self.register_buffer('position_embedding_block_y', position_embedding_blocks_y.view(max_len, 1, vit_output_size), persistent=False) self.position_embedding_block_scale = nn.Parameter(torch.tensor(0.4531)) # self.position_embedding.data.mean() = 0.4531 else: raise ValueError(f"Got unexcepted block_position_embedding {config.block_position_embedding}") # if config.force_image_size != config.vision_config.image_size: # self.vision_model.resize_pos_embeddings( # old_size=config.vision_config.image_size, # new_size=config.force_image_size, # patch_size=config.vision_config.patch_size # ) self.img_context_token_id = None self.neftune_alpha = None if config.use_backbone_lora: alpha = config.use_backbone_alpha if config.use_backbone_alpha > 0 else 2 * config.use_backbone_lora self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=alpha) if config.use_llm_lora: alpha = config.use_llm_alpha if config.use_llm_alpha > 0 else 2 * config.use_llm_lora self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=alpha) def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05): lora_config = LoraConfig( r=r, target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'], lora_alpha=lora_alpha, lora_dropout=lora_dropout, ) self.vision_model = get_peft_model(self.vision_model, lora_config) self.vision_model.print_trainable_parameters() def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05): lora_config = LoraConfig( r=r, # target_modules=['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj', # 'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj'], target_modules = ['feed_forward.w1', 'feed_forward.w2', 'feed_forward.w3', 'attention.wo', 'attention.wqkv'], lora_alpha=lora_alpha, lora_dropout=lora_dropout, task_type='CAUSAL_LM' ) self.language_model = get_peft_model(self.language_model, lora_config) self.language_model.enable_input_require_grads() self.language_model.print_trainable_parameters() # generate 不会经过 forward !!!!! def forward( self, pixel_values: torch.FloatTensor, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, image_flags: Optional[torch.LongTensor] = None, target_aspect_ratio: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict image_flags = image_flags.squeeze(-1) input_embeds = self.language_model.get_input_embeddings()(input_ids).clone() vit_embeds = self.extract_feature(pixel_values, target_aspect_ratio) vit_embeds = vit_embeds[image_flags == 1] vit_batch_size = pixel_values.shape[0] B, N, C = input_embeds.shape input_embeds = input_embeds.reshape(B * N, C) # if torch.distributed.get_rank() == 0: # print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}') input_ids = input_ids.reshape(B * N) selected = (input_ids == self.img_context_token_id) try: if not self.block_revise: input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C) else: vit_embeds_h = vit_embeds_w = int(vit_embeds.shape[1] ** 0.5) vit_embeds = vit_embeds.view(vit_embeds.shape[0], vit_embeds_h, vit_embeds_w, -1) start_idx = 0 img_batch = [] for block_num_w, block_num_h in target_aspect_ratio: img = vit_embeds[start_idx: start_idx + block_num_w * block_num_h].view(block_num_h, block_num_w, vit_embeds_h, vit_embeds_w, -1) img = img.permute(0, 2, 1, 3, 4).reshape(-1, C) # [block_num_h * vit_embeds_h * block_num_w * vit_embeds_w, channels] img_batch.append(img) start_idx += block_num_w * block_num_h vit_embeds = torch.cat(img_batch, dim=0) input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds except Exception as e: vit_embeds = vit_embeds.reshape(-1, C) print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, ' f'vit_embeds.shape={vit_embeds.shape}') n_token = selected.sum() input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token] input_embeds = input_embeds.reshape(B, N, C) outputs = self.language_model( inputs_embeds=input_embeds, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs.logits loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def pixel_shuffle(self, x, scale_factor=0.5, target_aspect_ratio=None): n, w, h, c = x.size() # N, W, H, C --> N, W, H * scale, C // scale x = x.view(n, w, int(h * scale_factor), int(c / scale_factor)) # N, W, H * scale, C // scale --> N, H * scale, W, C // scale x = x.permute(0, 2, 1, 3).contiguous() # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2) x = x.view(n, int(h * scale_factor), int(w * scale_factor), int(c / (scale_factor * scale_factor))) if self.ps_version == 'v1': warnings.warn("In ps_version 'v1', the height and width have not been swapped back, " 'which results in a transposed image.') else: x = x.permute(0, 2, 1, 3).contiguous() # 2D position embedding if self.config.block_position_embedding is not None: if target_aspect_ratio is None: raise ValueError("Expected target_aspect_ratio when block_position_embedding is not None") if self.config.block_position_embedding in ['v1', 'v2']: vit_output_size = int(self.config.vision_config.hidden_size / (scale_factor * scale_factor)) block_embed_x = [] block_embed_y = [] for ratio in target_aspect_ratio: # ratio: (w, h) block_embed_x_item = self.position_embedding_block_x[:, :ratio[0], :].repeat(ratio[1], 1, 1) # [block_h, block_w, channel] block_embed_y_item = self.position_embedding_block_y[:ratio[1], :, :].repeat(1, ratio[0], 1) block_embed_x.append(block_embed_x_item.view(-1, 1, 1, vit_output_size)) # [block_h*block_w, 1, 1, channel] block_embed_y.append(block_embed_y_item.view(-1, 1, 1, vit_output_size)) block_embed_x = torch.cat(block_embed_x, 0) # [B*block_h*block_w, 1, 1, channel] block_embed_y = torch.cat(block_embed_y, 0) # breakpoint() if self.config.block_position_embedding == 'v1': x = x + block_embed_x + block_embed_y # [B*block_h*block_w, width*height, channel] elif self.config.block_position_embedding == 'v2': x = x + (block_embed_x + block_embed_y) * self.position_embedding_block_scale return x def noised_embed(self, vit_embeds, noise_alpha=5): dims = torch.tensor(vit_embeds.size(1) * vit_embeds.size(2)) mag_norm = noise_alpha / torch.sqrt(dims) noise = torch.zeros_like(vit_embeds).uniform_(-mag_norm, mag_norm) return vit_embeds + noise def extract_feature(self, pixel_values, target_aspect_ratio=None): if self.select_layer == -1: vit_embeds = self.vision_model( pixel_values=pixel_values, target_aspect_ratio=target_aspect_ratio, output_hidden_states=False, return_dict=True).last_hidden_state else: vit_embeds = self.vision_model( pixel_values=pixel_values, target_aspect_ratio=target_aspect_ratio, output_hidden_states=True, return_dict=True).hidden_states[self.select_layer] vit_embeds = vit_embeds[:, 1:, :] if self.training and self.neftune_alpha is not None: vit_embeds = self.noised_embed(vit_embeds, self.neftune_alpha) h = w = int(vit_embeds.shape[1] ** 0.5) vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1) vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio, target_aspect_ratio=target_aspect_ratio) vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1]) vit_embeds = self.mlp1(vit_embeds)#.to(pixel_values.device) return vit_embeds def chat(self, tokenizer, pixel_values, question, generation_config, target_aspect_ratio=None, history=None, return_history=False, IMG_START_TOKEN='', IMG_END_TOKEN='', IMG_CONTEXT_TOKEN=''): img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) self.img_context_token_id = img_context_token_id if tokenizer.convert_tokens_to_ids('<|im_end|>') != 0: eos_token_id = tokenizer.convert_tokens_to_ids('<|im_end|>') # 92542, InternLM2 else: eos_token_id = tokenizer.eos_token_id # from internvl.conversation import get_conv_template from .conversation import get_conv_template template = get_conv_template(self.template) image_bs = pixel_values.shape[0] # print(f'dynamic ViT batch size: {image_bs}') if history is None: history = [] image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * image_bs + IMG_END_TOKEN question = image_tokens + '\n' + question else: for (old_question, old_answer) in history: template.append_message(template.roles[0], old_question) template.append_message(template.roles[1], old_answer) template.append_message(template.roles[0], question) template.append_message(template.roles[1], None) query = template.get_prompt() model_inputs = tokenizer(query, return_tensors='pt') input_ids = model_inputs['input_ids'].cuda() attention_mask = model_inputs['attention_mask'].cuda() generation_config['eos_token_id'] = eos_token_id generation_output = self.generate( pixel_values=pixel_values, input_ids=input_ids, attention_mask=attention_mask, target_aspect_ratio=target_aspect_ratio, **generation_config ) response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0] response = response.split('<|im_end|>')[0].strip() # for InternLM2 history.append((question, response)) if return_history: return response, history else: query_to_print = query.replace(image_tokens, '') # print(query_to_print, response) return response return response def multi_image_chat(self, tokenizer, pixel_values, image_counts, question, generation_config, history=None, return_history=False, IMG_START_TOKEN='', IMG_END_TOKEN='', IMG_CONTEXT_TOKEN=''): img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) self.img_context_token_id = img_context_token_id if tokenizer.convert_tokens_to_ids('<|im_end|>') != 0: eos_token_id = tokenizer.convert_tokens_to_ids('<|im_end|>') # 92542, InternLM2 else: eos_token_id = tokenizer.eos_token_id # from internvl.conversation import get_conv_template from .conversation import get_conv_template template = get_conv_template(self.template) if history is None: history = [] image_tokens = '' image_bs = pixel_values.shape[0] print(f'dynamic ViT batch size: {image_bs}, image_counts: {image_counts}') for idx, image_count in enumerate(image_counts): image_tokens += f' (图{idx+1}):' + IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * image_count + IMG_END_TOKEN question = image_tokens + '\n' + question else: for (old_question, old_answer) in history: template.append_message(template.roles[0], old_question) template.append_message(template.roles[1], old_answer) template.append_message(template.roles[0], question) template.append_message(template.roles[1], None) query = template.get_prompt() model_inputs = tokenizer(query, return_tensors='pt') input_ids = model_inputs['input_ids'].cuda() attention_mask = model_inputs['attention_mask'].cuda() generation_config['eos_token_id'] = eos_token_id generation_output = self.generate( pixel_values=pixel_values, input_ids=input_ids, attention_mask=attention_mask, **generation_config ) response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0] response = response.split('<|im_end|>')[0].strip() # for InternLM2 history.append((question, response)) if return_history: return response, history else: query_to_print = query.replace(image_tokens, '') # print(query_to_print, response) return response return response @torch.no_grad() def generate( self, pixel_values: Optional[torch.FloatTensor] = None, input_ids: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, visual_features: Optional[torch.FloatTensor] = None, target_aspect_ratio: Optional[torch.LongTensor] = None, generation_config: Optional[GenerationConfig] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **generate_kwargs, ) -> torch.LongTensor: assert self.img_context_token_id is not None if pixel_values is not None: if visual_features is not None: vit_embeds = visual_features else: vit_embeds = self.extract_feature(pixel_values, target_aspect_ratio) input_embeds = self.language_model.get_input_embeddings()(input_ids) B, N, C = input_embeds.shape input_embeds = input_embeds.reshape(B * N, C) input_ids = input_ids.reshape(B * N) selected = (input_ids == self.img_context_token_id) assert selected.sum() != 0 if not self.block_revise: input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device) else: vit_embeds_h = vit_embeds_w = int(vit_embeds.shape[1] ** 0.5) vit_embeds = vit_embeds.view(vit_embeds.shape[0], vit_embeds_h, vit_embeds_w, -1) start_idx = 0 img_batch = [] for block_num_w, block_num_h in target_aspect_ratio: img = vit_embeds[start_idx: start_idx + block_num_w * block_num_h].view(block_num_h, block_num_w, vit_embeds_h, vit_embeds_w, -1) img = img.permute(0, 2, 1, 3, 4).reshape(-1, C) # [block_num_h * vit_embeds_h * block_num_w * vit_embeds_w, channels] img_batch.append(img) start_idx += block_num_w * block_num_h vit_embeds = torch.cat(img_batch, dim=0) input_embeds[selected] = vit_embeds.to(input_embeds.device) input_embeds = input_embeds.reshape(B, N, C) else: input_embeds = self.language_model.get_input_embeddings()(input_ids) # transformers 在 train 中 eval 的一些考虑不足的地方 # 数据集中 __getitem__ 出来的所有键值,不在 position args 中的, # 会跑到 keyword args 中,也就是这里的 generate_kwargs if 'image_flags' in generate_kwargs: generate_kwargs.pop('image_flags') generate_kwargs_new = { "num_beams": 1, "max_new_tokens": 1024, "min_new_tokens": 1, "do_sample": True, "temperature": 0.8, "eos_token_id": 92542, } generate_kwargs_new.update(**generate_kwargs) outputs = self.language_model.generate( inputs_embeds=input_embeds, attention_mask=attention_mask, generation_config=generation_config, output_hidden_states=output_hidden_states, return_dict=return_dict, use_cache=True, **generate_kwargs_new, ) return outputs