SebastianRuff leoxiaobin commited on
Commit
354cb05
·
verified ·
0 Parent(s):

Duplicate from microsoft/Florence-2-large

Browse files

Co-authored-by: Bin Xiao <[email protected]>

.gitattributes ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *bin filter=lfs diff=lfs merge=lfs -text
CODE_OF_CONDUCT.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ # Microsoft Open Source Code of Conduct
2
+
3
+ This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
4
+
5
+ Resources:
6
+
7
+ - [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/)
8
+ - [Microsoft Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/)
9
+ - Contact [[email protected]](mailto:[email protected]) with questions or concerns
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) Microsoft Corporation.
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE
README.md ADDED
@@ -0,0 +1,302 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ license_link: https://huggingface.co/microsoft/Florence-2-large/resolve/main/LICENSE
4
+ pipeline_tag: image-text-to-text
5
+ tags:
6
+ - vision
7
+ ---
8
+
9
+ # Florence-2: Advancing a Unified Representation for a Variety of Vision Tasks
10
+
11
+ ## Model Summary
12
+
13
+ **This is a continued pretrained version of Florence-2-large model with 4k context length, only 0.1B samples are used for continue pretraining, thus it might not be trained well. In addition, OCR task has been updated with line separator ('\n'). COCO OD AP 39.8**
14
+
15
+ This Hub repository contains a HuggingFace's `transformers` implementation of Florence-2 model from Microsoft.
16
+
17
+ Florence-2 is an advanced vision foundation model that uses a prompt-based approach to handle a wide range of vision and vision-language tasks. Florence-2 can interpret simple text prompts to perform tasks like captioning, object detection, and segmentation. It leverages our FLD-5B dataset, containing 5.4 billion annotations across 126 million images, to master multi-task learning. The model's sequence-to-sequence architecture enables it to excel in both zero-shot and fine-tuned settings, proving to be a competitive vision foundation model.
18
+
19
+ Resources and Technical Documentation:
20
+ + [Florence-2 technical report](https://arxiv.org/abs/2311.06242).
21
+ + [Jupyter Notebook for inference and visualization of Florence-2-large](https://huggingface.co/microsoft/Florence-2-large/blob/main/sample_inference.ipynb)
22
+
23
+ | Model | Model size | Model Description |
24
+ | ------- | ------------- | ------------- |
25
+ | Florence-2-base[[HF]](https://huggingface.co/microsoft/Florence-2-base) | 0.23B | Pretrained model with FLD-5B
26
+ | Florence-2-large[[HF]](https://huggingface.co/microsoft/Florence-2-large) | 0.77B | Pretrained model with FLD-5B
27
+ | Florence-2-base-ft[[HF]](https://huggingface.co/microsoft/Florence-2-base-ft) | 0.23B | Finetuned model on a colletion of downstream tasks
28
+ | Florence-2-large-ft[[HF]](https://huggingface.co/microsoft/Florence-2-large-ft) | 0.77B | Finetuned model on a colletion of downstream tasks
29
+
30
+ ## How to Get Started with the Model
31
+
32
+ Use the code below to get started with the model. All models are trained with float16.
33
+
34
+ ```python
35
+ import requests
36
+
37
+ import torch
38
+ from PIL import Image
39
+ from transformers import AutoProcessor, AutoModelForCausalLM
40
+
41
+
42
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
43
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
44
+
45
+ model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large", torch_dtype=torch_dtype, trust_remote_code=True).to(device)
46
+ processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
47
+
48
+ prompt = "<OD>"
49
+
50
+ url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
51
+ image = Image.open(requests.get(url, stream=True).raw)
52
+
53
+ inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
54
+
55
+ generated_ids = model.generate(
56
+ input_ids=inputs["input_ids"],
57
+ pixel_values=inputs["pixel_values"],
58
+ max_new_tokens=4096,
59
+ num_beams=3,
60
+ do_sample=False
61
+ )
62
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
63
+
64
+ parsed_answer = processor.post_process_generation(generated_text, task="<OD>", image_size=(image.width, image.height))
65
+
66
+ print(parsed_answer)
67
+
68
+ ```
69
+
70
+
71
+ ## Tasks
72
+
73
+ This model is capable of performing different tasks through changing the prompts.
74
+
75
+ First, let's define a function to run a prompt.
76
+
77
+ <details>
78
+ <summary> Click to expand </summary>
79
+
80
+ ```python
81
+ import requests
82
+
83
+ import torch
84
+ from PIL import Image
85
+ from transformers import AutoProcessor, AutoModelForCausalLM
86
+
87
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
88
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
89
+
90
+ model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large", torch_dtype=torch_dtype, trust_remote_code=True).to(device)
91
+ processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
92
+
93
+ url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
94
+ image = Image.open(requests.get(url, stream=True).raw)
95
+
96
+ def run_example(task_prompt, text_input=None):
97
+ if text_input is None:
98
+ prompt = task_prompt
99
+ else:
100
+ prompt = task_prompt + text_input
101
+ inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
102
+ generated_ids = model.generate(
103
+ input_ids=inputs["input_ids"],
104
+ pixel_values=inputs["pixel_values"],
105
+ max_new_tokens=1024,
106
+ num_beams=3
107
+ )
108
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
109
+
110
+ parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
111
+
112
+ print(parsed_answer)
113
+ ```
114
+ </details>
115
+
116
+ Here are the tasks `Florence-2` could perform:
117
+
118
+ <details>
119
+ <summary> Click to expand </summary>
120
+
121
+
122
+
123
+ ### Caption
124
+ ```python
125
+ prompt = "<CAPTION>"
126
+ run_example(prompt)
127
+ ```
128
+
129
+ ### Detailed Caption
130
+ ```python
131
+ prompt = "<DETAILED_CAPTION>"
132
+ run_example(prompt)
133
+ ```
134
+
135
+ ### More Detailed Caption
136
+ ```python
137
+ prompt = "<MORE_DETAILED_CAPTION>"
138
+ run_example(prompt)
139
+ ```
140
+
141
+ ### Caption to Phrase Grounding
142
+ caption to phrase grounding task requires additional text input, i.e. caption.
143
+
144
+ Caption to phrase grounding results format:
145
+ {'\<CAPTION_TO_PHRASE_GROUNDING>': {'bboxes': [[x1, y1, x2, y2], ...], 'labels': ['', '', ...]}}
146
+ ```python
147
+ task_prompt = "<CAPTION_TO_PHRASE_GROUNDING>"
148
+ results = run_example(task_prompt, text_input="A green car parked in front of a yellow building.")
149
+ ```
150
+
151
+ ### Object Detection
152
+
153
+ OD results format:
154
+ {'\<OD>': {'bboxes': [[x1, y1, x2, y2], ...],
155
+ 'labels': ['label1', 'label2', ...]} }
156
+
157
+ ```python
158
+ prompt = "<OD>"
159
+ run_example(prompt)
160
+ ```
161
+
162
+ ### Dense Region Caption
163
+ Dense region caption results format:
164
+ {'\<DENSE_REGION_CAPTION>' : {'bboxes': [[x1, y1, x2, y2], ...],
165
+ 'labels': ['label1', 'label2', ...]} }
166
+ ```python
167
+ prompt = "<DENSE_REGION_CAPTION>"
168
+ run_example(prompt)
169
+ ```
170
+
171
+ ### Region proposal
172
+ Dense region caption results format:
173
+ {'\<REGION_PROPOSAL>': {'bboxes': [[x1, y1, x2, y2], ...],
174
+ 'labels': ['', '', ...]}}
175
+ ```python
176
+ prompt = "<REGION_PROPOSAL>"
177
+ run_example(prompt)
178
+ ```
179
+
180
+ ### OCR
181
+
182
+ ```python
183
+ prompt = "<OCR>"
184
+ run_example(prompt)
185
+ ```
186
+
187
+ ### OCR with Region
188
+ OCR with region output format:
189
+ {'\<OCR_WITH_REGION>': {'quad_boxes': [[x1, y1, x2, y2, x3, y3, x4, y4], ...], 'labels': ['text1', ...]}}
190
+ ```python
191
+ prompt = "<OCR_WITH_REGION>"
192
+ run_example(prompt)
193
+ ```
194
+
195
+ ### Output confidence score with Object Detection
196
+ ```python
197
+
198
+ def run_example_with_score(task_prompt, text_input=None):
199
+ if text_input is None:
200
+ prompt = task_prompt
201
+ else:
202
+ prompt = task_prompt + text_input
203
+ inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
204
+ generated_ids = model.generate(
205
+ input_ids=inputs["input_ids"],
206
+ pixel_values=inputs["pixel_values"],
207
+ max_new_tokens=1024,
208
+ num_beams=3,
209
+ return_dict_in_generate=True,
210
+ output_scores=True,
211
+ )
212
+ generated_text = processor.batch_decode(generated_ids.sequences, skip_special_tokens=False)[0]
213
+
214
+ prediction, scores, beam_indices = generated_ids.sequences, generated_ids.scores, generated_ids.beam_indices
215
+ transition_beam_scores = model.compute_transition_scores(
216
+ sequences=prediction,
217
+ scores=scores,
218
+ beam_indices=beam_indices,
219
+ )
220
+
221
+ parsed_answer = processor.post_process_generation(sequence=generated_ids.sequences[0],
222
+ transition_beam_score=transition_beam_scores[0],
223
+ task=task_prompt, image_size=(image.width, image.height)
224
+ )
225
+
226
+ print(parsed_answer)
227
+
228
+ prompt = "<OD>"
229
+ run_example_with_score(prompt)
230
+
231
+ ```
232
+
233
+ for More detailed examples, please refer to [notebook](https://huggingface.co/microsoft/Florence-2-large/blob/main/sample_inference.ipynb)
234
+ </details>
235
+
236
+ # Benchmarks
237
+
238
+ ## Florence-2 Zero-shot performance
239
+
240
+ The following table presents the zero-shot performance of generalist vision foundation models on image captioning and object detection evaluation tasks. These models have not been exposed to the training data of the evaluation tasks during their training phase.
241
+
242
+ | Method | #params | COCO Cap. test CIDEr | NoCaps val CIDEr | TextCaps val CIDEr | COCO Det. val2017 mAP |
243
+ |--------|---------|----------------------|------------------|--------------------|-----------------------|
244
+ | Flamingo | 80B | 84.3 | - | - | - |
245
+ | Florence-2-base| 0.23B | 133.0 | 118.7 | 70.1 | 34.7 |
246
+ | Florence-2-large| 0.77B | 135.6 | 120.8 | 72.8 | 37.5 |
247
+
248
+
249
+ The following table continues the comparison with performance on other vision-language evaluation tasks.
250
+
251
+ | Method | Flickr30k test R@1 | Refcoco val Accuracy | Refcoco test-A Accuracy | Refcoco test-B Accuracy | Refcoco+ val Accuracy | Refcoco+ test-A Accuracy | Refcoco+ test-B Accuracy | Refcocog val Accuracy | Refcocog test Accuracy | Refcoco RES val mIoU |
252
+ |--------|----------------------|----------------------|-------------------------|-------------------------|-----------------------|--------------------------|--------------------------|-----------------------|------------------------|----------------------|
253
+ | Kosmos-2 | 78.7 | 52.3 | 57.4 | 47.3 | 45.5 | 50.7 | 42.2 | 60.6 | 61.7 | - |
254
+ | Florence-2-base | 83.6 | 53.9 | 58.4 | 49.7 | 51.5 | 56.4 | 47.9 | 66.3 | 65.1 | 34.6 |
255
+ | Florence-2-large | 84.4 | 56.3 | 61.6 | 51.4 | 53.6 | 57.9 | 49.9 | 68.0 | 67.0 | 35.8 |
256
+
257
+
258
+
259
+ ## Florence-2 finetuned performance
260
+
261
+ We finetune Florence-2 models with a collection of downstream tasks, resulting two generalist models *Florence-2-base-ft* and *Florence-2-large-ft* that can conduct a wide range of downstream tasks.
262
+
263
+ The table below compares the performance of specialist and generalist models on various captioning and Visual Question Answering (VQA) tasks. Specialist models are fine-tuned specifically for each task, whereas generalist models are fine-tuned in a task-agnostic manner across all tasks. The symbol "▲" indicates the usage of external OCR as input.
264
+
265
+ | Method | # Params | COCO Caption Karpathy test CIDEr | NoCaps val CIDEr | TextCaps val CIDEr | VQAv2 test-dev Acc | TextVQA test-dev Acc | VizWiz VQA test-dev Acc |
266
+ |----------------|----------|-----------------------------------|------------------|--------------------|--------------------|----------------------|-------------------------|
267
+ | **Specialist Models** | | | | | | | |
268
+ | CoCa | 2.1B | 143.6 | 122.4 | - | 82.3 | - | - |
269
+ | BLIP-2 | 7.8B | 144.5 | 121.6 | - | 82.2 | - | - |
270
+ | GIT2 | 5.1B | 145.0 | 126.9 | 148.6 | 81.7 | 67.3 | 71.0 |
271
+ | Flamingo | 80B | 138.1 | - | - | 82.0 | 54.1 | 65.7 |
272
+ | PaLI | 17B | 149.1 | 127.0 | 160.0▲ | 84.3 | 58.8 / 73.1▲ | 71.6 / 74.4▲ |
273
+ | PaLI-X | 55B | 149.2 | 126.3 | 147.0 / 163.7▲ | 86.0 | 71.4 / 80.8▲ | 70.9 / 74.6▲ |
274
+ | **Generalist Models** | | | | | | | |
275
+ | Unified-IO | 2.9B | - | 100.0 | - | 77.9 | - | 57.4 |
276
+ | Florence-2-base-ft | 0.23B | 140.0 | 116.7 | 143.9 | 79.7 | 63.6 | 63.6 |
277
+ | Florence-2-large-ft | 0.77B | 143.3 | 124.9 | 151.1 | 81.7 | 73.5 | 72.6 |
278
+
279
+
280
+ | Method | # Params | COCO Det. val2017 mAP | Flickr30k test R@1 | RefCOCO val Accuracy | RefCOCO test-A Accuracy | RefCOCO test-B Accuracy | RefCOCO+ val Accuracy | RefCOCO+ test-A Accuracy | RefCOCO+ test-B Accuracy | RefCOCOg val Accuracy | RefCOCOg test Accuracy | RefCOCO RES val mIoU |
281
+ |----------------------|----------|-----------------------|--------------------|----------------------|-------------------------|-------------------------|------------------------|---------------------------|---------------------------|------------------------|-----------------------|------------------------|
282
+ | **Specialist Models** | | | | | | | | | | | | |
283
+ | SeqTR | - | - | - | 83.7 | 86.5 | 81.2 | 71.5 | 76.3 | 64.9 | 74.9 | 74.2 | - |
284
+ | PolyFormer | - | - | - | 90.4 | 92.9 | 87.2 | 85.0 | 89.8 | 78.0 | 85.8 | 85.9 | 76.9 |
285
+ | UNINEXT | 0.74B | 60.6 | - | 92.6 | 94.3 | 91.5 | 85.2 | 89.6 | 79.8 | 88.7 | 89.4 | - |
286
+ | Ferret | 13B | - | - | 89.5 | 92.4 | 84.4 | 82.8 | 88.1 | 75.2 | 85.8 | 86.3 | - |
287
+ | **Generalist Models** | | | | | | | | | | | | |
288
+ | UniTAB | - | - | - | 88.6 | 91.1 | 83.8 | 81.0 | 85.4 | 71.6 | 84.6 | 84.7 | - |
289
+ | Florence-2-base-ft | 0.23B | 41.4 | 84.0 | 92.6 | 94.8 | 91.5 | 86.8 | 91.7 | 82.2 | 89.8 | 82.2 | 78.0 |
290
+ | Florence-2-large-ft| 0.77B | 43.4 | 85.2 | 93.4 | 95.3 | 92.0 | 88.3 | 92.9 | 83.6 | 91.2 | 91.7 | 80.5 |
291
+
292
+
293
+ ## BibTex and citation info
294
+
295
+ ```
296
+ @article{xiao2023florence,
297
+ title={Florence-2: Advancing a unified representation for a variety of vision tasks},
298
+ author={Xiao, Bin and Wu, Haiping and Xu, Weijian and Dai, Xiyang and Hu, Houdong and Lu, Yumao and Zeng, Michael and Liu, Ce and Yuan, Lu},
299
+ journal={arXiv preprint arXiv:2311.06242},
300
+ year={2023}
301
+ }
302
+ ```
SECURITY.md ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!-- BEGIN MICROSOFT SECURITY.MD V0.0.9 BLOCK -->
2
+
3
+ ## Security
4
+
5
+ Microsoft takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organizations, which include [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet) and [Xamarin](https://github.com/xamarin).
6
+
7
+ If you believe you have found a security vulnerability in any Microsoft-owned repository that meets [Microsoft's definition of a security vulnerability](https://aka.ms/security.md/definition), please report it to us as described below.
8
+
9
+ ## Reporting Security Issues
10
+
11
+ **Please do not report security vulnerabilities through public GitHub issues.**
12
+
13
+ Instead, please report them to the Microsoft Security Response Center (MSRC) at [https://msrc.microsoft.com/create-report](https://aka.ms/security.md/msrc/create-report).
14
+
15
+ If you prefer to submit without logging in, send email to [[email protected]](mailto:[email protected]). If possible, encrypt your message with our PGP key; please download it from the [Microsoft Security Response Center PGP Key page](https://aka.ms/security.md/msrc/pgp).
16
+
17
+ You should receive a response within 24 hours. If for some reason you do not, please follow up via email to ensure we received your original message. Additional information can be found at [microsoft.com/msrc](https://www.microsoft.com/msrc).
18
+
19
+ Please include the requested information listed below (as much as you can provide) to help us better understand the nature and scope of the possible issue:
20
+
21
+ * Type of issue (e.g. buffer overflow, SQL injection, cross-site scripting, etc.)
22
+ * Full paths of source file(s) related to the manifestation of the issue
23
+ * The location of the affected source code (tag/branch/commit or direct URL)
24
+ * Any special configuration required to reproduce the issue
25
+ * Step-by-step instructions to reproduce the issue
26
+ * Proof-of-concept or exploit code (if possible)
27
+ * Impact of the issue, including how an attacker might exploit the issue
28
+
29
+ This information will help us triage your report more quickly.
30
+
31
+ If you are reporting for a bug bounty, more complete reports can contribute to a higher bounty award. Please visit our [Microsoft Bug Bounty Program](https://aka.ms/security.md/msrc/bounty) page for more details about our active programs.
32
+
33
+ ## Preferred Languages
34
+
35
+ We prefer all communications to be in English.
36
+
37
+ ## Policy
38
+
39
+ Microsoft follows the principle of [Coordinated Vulnerability Disclosure](https://aka.ms/security.md/cvd).
40
+
41
+ <!-- END MICROSOFT SECURITY.MD BLOCK -->
SUPPORT.md ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # TODO: The maintainer of this repo has not yet edited this file
2
+
3
+ **REPO OWNER**: Do you want Customer Service & Support (CSS) support for this product/project?
4
+
5
+ - **No CSS support:** Fill out this template with information about how to file issues and get help.
6
+ - **Yes CSS support:** Fill out an intake form at [aka.ms/onboardsupport](https://aka.ms/onboardsupport). CSS will work with/help you to determine next steps.
7
+ - **Not sure?** Fill out an intake as though the answer were "Yes". CSS will help you decide.
8
+
9
+ *Then remove this first heading from this SUPPORT.MD file before publishing your repo.*
10
+
11
+ # Support
12
+
13
+ ## How to file issues and get help
14
+
15
+ This project uses GitHub Issues to track bugs and feature requests. Please search the existing
16
+ issues before filing new issues to avoid duplicates. For new issues, file your bug or
17
+ feature request as a new Issue.
18
+
19
+ For help and questions about using this project, please **REPO MAINTAINER: INSERT INSTRUCTIONS HERE
20
+ FOR HOW TO ENGAGE REPO OWNERS OR COMMUNITY FOR HELP. COULD BE A STACK OVERFLOW TAG OR OTHER
21
+ CHANNEL. WHERE WILL YOU HELP PEOPLE?**.
22
+
23
+ ## Microsoft Support Policy
24
+
25
+ Support for this **PROJECT or PRODUCT** is limited to the resources listed above.
config.json ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "florence2",
3
+ "architectures": [
4
+ "Florence2ForConditionalGeneration"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_florence2.Florence2Config",
8
+ "AutoModelForCausalLM": "modeling_florence2.Florence2ForConditionalGeneration"
9
+ },
10
+ "bos_token_id": 0,
11
+ "eos_token_id": 2,
12
+ "ignore_index": -100,
13
+ "model_type": "florence2",
14
+ "pad_token_id": 1,
15
+ "projection_dim": 1024,
16
+ "text_config": {
17
+ "vocab_size": 51289,
18
+ "activation_dropout": 0.1,
19
+ "activation_function": "gelu",
20
+ "add_bias_logits": false,
21
+ "add_final_layer_norm": false,
22
+ "attention_dropout": 0.1,
23
+ "bos_token_id": 0,
24
+ "classif_dropout": 0.1,
25
+ "classifier_dropout": 0.0,
26
+ "d_model": 1024,
27
+ "decoder_attention_heads": 16,
28
+ "decoder_ffn_dim": 4096,
29
+ "decoder_layerdrop": 0.0,
30
+ "decoder_layers": 12,
31
+ "decoder_start_token_id": 2,
32
+ "dropout": 0.1,
33
+ "early_stopping": true,
34
+ "encoder_attention_heads": 16,
35
+ "encoder_ffn_dim": 4096,
36
+ "encoder_layerdrop": 0.0,
37
+ "encoder_layers": 12,
38
+ "eos_token_id": 2,
39
+ "forced_eos_token_id": 2,
40
+ "forced_bos_token_id": 0,
41
+ "gradient_checkpointing": false,
42
+ "init_std": 0.02,
43
+ "is_encoder_decoder": true,
44
+ "label2id": {
45
+ "LABEL_0": 0,
46
+ "LABEL_1": 1,
47
+ "LABEL_2": 2
48
+ },
49
+ "max_position_embeddings": 4096,
50
+ "no_repeat_ngram_size": 3,
51
+ "normalize_before": false,
52
+ "num_hidden_layers": 12,
53
+ "pad_token_id": 1,
54
+ "scale_embedding": false,
55
+ "num_beams": 3
56
+ },
57
+ "vision_config": {
58
+ "model_type": "davit",
59
+ "drop_path_rate": 0.1,
60
+ "patch_size": [7, 3, 3, 3],
61
+ "patch_stride": [4, 2, 2, 2],
62
+ "patch_padding": [3, 1, 1, 1],
63
+ "patch_prenorm": [false, true, true, true],
64
+ "enable_checkpoint": false,
65
+ "dim_embed": [256, 512, 1024, 2048],
66
+ "num_heads": [8, 16, 32, 64],
67
+ "num_groups": [8, 16, 32, 64],
68
+ "depths": [1, 1, 9, 1],
69
+ "window_size": 12,
70
+ "projection_dim": 1024,
71
+ "visual_temporal_embedding": {
72
+ "type": "COSINE",
73
+ "max_temporal_embeddings": 100
74
+ },
75
+ "image_pos_embed": {
76
+ "type": "learned_abs_2d",
77
+ "max_pos_embeddings": 50
78
+ },
79
+ "image_feature_source": ["spatial_avg_pool", "temporal_avg_pool"]
80
+ },
81
+ "vocab_size": 51289,
82
+ "torch_dtype": "float16",
83
+ "transformers_version": "4.41.0.dev0",
84
+ "is_encoder_decoder": true
85
+ }
configuration_florence2.py ADDED
@@ -0,0 +1,340 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import warnings
15
+ """ Florence-2 configuration"""
16
+
17
+ from typing import Optional
18
+
19
+ from transformers import AutoConfig
20
+ from transformers.configuration_utils import PretrainedConfig
21
+ from transformers.utils import logging
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+ class Florence2VisionConfig(PretrainedConfig):
26
+ r"""
27
+ This is the configuration class to store the configuration of a [`Florence2VisionModel`]. It is used to instantiate a Florence2VisionModel
28
+ according to the specified arguments, defining the model architecture. Instantiating a configuration with the
29
+ defaults will yield a similar configuration to that of the Florence2VisionModel architecture.
30
+
31
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
32
+ documentation from [`PretrainedConfig`] for more information.
33
+
34
+ Args:
35
+ drop_path_rate (`float`, *optional*, defaults to 0.1):
36
+ The dropout rate of the drop path layer.
37
+ patch_size (`List[int]`, *optional*, defaults to [7, 3, 3, 3]):
38
+ The patch size of the image.
39
+ patch_stride (`List[int]`, *optional*, defaults to [4, 2, 2, 2]):
40
+ The patch stride of the image.
41
+ patch_padding (`List[int]`, *optional*, defaults to [3, 1, 1, 1]):
42
+ The patch padding of the image.
43
+ patch_prenorm (`List[bool]`, *optional*, defaults to [false, true, true, true]):
44
+ Whether to apply layer normalization before the patch embedding layer.
45
+ enable_checkpoint (`bool`, *optional*, defaults to False):
46
+ Whether to enable checkpointing.
47
+ dim_embed (`List[int]`, *optional*, defaults to [256, 512, 1024, 2048]):
48
+ The dimension of the embedding layer.
49
+ num_heads (`List[int]`, *optional*, defaults to [8, 16, 32, 64]):
50
+ The number of attention heads.
51
+ num_groups (`List[int]`, *optional*, defaults to [8, 16, 32, 64]):
52
+ The number of groups.
53
+ depths (`List[int]`, *optional*, defaults to [1, 1, 9, 1]):
54
+ The depth of the model.
55
+ window_size (`int`, *optional*, defaults to 12):
56
+ The window size of the model.
57
+ projection_dim (`int`, *optional*, defaults to 1024):
58
+ The dimension of the projection layer.
59
+ visual_temporal_embedding (`dict`, *optional*):
60
+ The configuration of the visual temporal embedding.
61
+ image_pos_embed (`dict`, *optional*):
62
+ The configuration of the image position embedding.
63
+ image_feature_source (`List[str]`, *optional*, defaults to ["spatial_avg_pool", "temporal_avg_pool"]):
64
+ The source of the image feature.
65
+ Example:
66
+
67
+ ```python
68
+ >>> from transformers import Florence2VisionConfig, Florence2VisionModel
69
+
70
+ >>> # Initializing a Florence2 Vision style configuration
71
+ >>> configuration = Florence2VisionConfig()
72
+
73
+ >>> # Initializing a model (with random weights)
74
+ >>> model = Florence2VisionModel(configuration)
75
+
76
+ >>> # Accessing the model configuration
77
+ >>> configuration = model.config
78
+ ```"""
79
+
80
+ model_type = "florence2_vision"
81
+ keys_to_ignore_at_inference = ["past_key_values"]
82
+
83
+ def __init__(
84
+ self,
85
+ drop_path_rate=0.1,
86
+ patch_size=[7, 3, 3, 3],
87
+ patch_stride=[4, 2, 2, 2],
88
+ patch_padding=[3, 1, 1, 1],
89
+ patch_prenorm=[False, True, True, True],
90
+ enable_checkpoint=False,
91
+ dim_embed=[256, 512, 1024, 2048],
92
+ num_heads=[8, 16, 32, 64],
93
+ num_groups=[8, 16, 32, 64],
94
+ depths=[1, 1, 9, 1],
95
+ window_size=12,
96
+ projection_dim=1024,
97
+ visual_temporal_embedding=None,
98
+ image_pos_embed=None,
99
+ image_feature_source=["spatial_avg_pool", "temporal_avg_pool"],
100
+ **kwargs,
101
+ ):
102
+ self.drop_path_rate = drop_path_rate
103
+ self.patch_size = patch_size
104
+ self.patch_stride = patch_stride
105
+ self.patch_padding = patch_padding
106
+ self.patch_prenorm = patch_prenorm
107
+ self.enable_checkpoint = enable_checkpoint
108
+ self.dim_embed = dim_embed
109
+ self.num_heads = num_heads
110
+ self.num_groups = num_groups
111
+ self.depths = depths
112
+ self.window_size = window_size
113
+ self.projection_dim = projection_dim
114
+ self.visual_temporal_embedding = visual_temporal_embedding
115
+ self.image_pos_embed = image_pos_embed
116
+ self.image_feature_source = image_feature_source
117
+
118
+ super().__init__(**kwargs)
119
+
120
+
121
+
122
+ class Florence2LanguageConfig(PretrainedConfig):
123
+ r"""
124
+ This is the configuration class to store the configuration of a [`Florence2LanguagePreTrainedModel`]. It is used to instantiate a BART
125
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
126
+ defaults will yield a similar configuration to that of the BART
127
+ [facebook/bart-large](https://huggingface.co/facebook/bart-large) architecture.
128
+
129
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
130
+ documentation from [`PretrainedConfig`] for more information.
131
+
132
+
133
+ Args:
134
+ vocab_size (`int`, *optional*, defaults to 51289):
135
+ Vocabulary size of the Florence2Language model. Defines the number of different tokens that can be represented by the
136
+ `inputs_ids` passed when calling [`Florence2LanguageModel`].
137
+ d_model (`int`, *optional*, defaults to 1024):
138
+ Dimensionality of the layers and the pooler layer.
139
+ encoder_layers (`int`, *optional*, defaults to 12):
140
+ Number of encoder layers.
141
+ decoder_layers (`int`, *optional*, defaults to 12):
142
+ Number of decoder layers.
143
+ encoder_attention_heads (`int`, *optional*, defaults to 16):
144
+ Number of attention heads for each attention layer in the Transformer encoder.
145
+ decoder_attention_heads (`int`, *optional*, defaults to 16):
146
+ Number of attention heads for each attention layer in the Transformer decoder.
147
+ decoder_ffn_dim (`int`, *optional*, defaults to 4096):
148
+ Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
149
+ encoder_ffn_dim (`int`, *optional*, defaults to 4096):
150
+ Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
151
+ activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
152
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
153
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
154
+ dropout (`float`, *optional*, defaults to 0.1):
155
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
156
+ attention_dropout (`float`, *optional*, defaults to 0.0):
157
+ The dropout ratio for the attention probabilities.
158
+ activation_dropout (`float`, *optional*, defaults to 0.0):
159
+ The dropout ratio for activations inside the fully connected layer.
160
+ classifier_dropout (`float`, *optional*, defaults to 0.0):
161
+ The dropout ratio for classifier.
162
+ max_position_embeddings (`int`, *optional*, defaults to 1024):
163
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
164
+ just in case (e.g., 512 or 1024 or 2048).
165
+ init_std (`float`, *optional*, defaults to 0.02):
166
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
167
+ encoder_layerdrop (`float`, *optional*, defaults to 0.0):
168
+ The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
169
+ for more details.
170
+ decoder_layerdrop (`float`, *optional*, defaults to 0.0):
171
+ The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
172
+ for more details.
173
+ scale_embedding (`bool`, *optional*, defaults to `False`):
174
+ Scale embeddings by diving by sqrt(d_model).
175
+ use_cache (`bool`, *optional*, defaults to `True`):
176
+ Whether or not the model should return the last key/values attentions (not used by all models).
177
+ num_labels (`int`, *optional*, defaults to 3):
178
+ The number of labels to use in [`Florence2LanguageForSequenceClassification`].
179
+ forced_eos_token_id (`int`, *optional*, defaults to 2):
180
+ The id of the token to force as the last generated token when `max_length` is reached. Usually set to
181
+ `eos_token_id`.
182
+
183
+ Example:
184
+
185
+ ```python
186
+ >>> from transformers import Florence2LanguageConfig, Florence2LanguageModel
187
+
188
+ >>> # Initializing a Florence2 Language style configuration
189
+ >>> configuration = Florence2LanguageConfig()
190
+
191
+ >>> # Initializing a model (with random weights)
192
+ >>> model = Florence2LangaugeModel(configuration)
193
+
194
+ >>> # Accessing the model configuration
195
+ >>> configuration = model.config
196
+ ```"""
197
+
198
+ model_type = "florence2_language"
199
+ keys_to_ignore_at_inference = ["past_key_values"]
200
+ attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
201
+
202
+ def __init__(
203
+ self,
204
+ vocab_size=51289,
205
+ max_position_embeddings=1024,
206
+ encoder_layers=12,
207
+ encoder_ffn_dim=4096,
208
+ encoder_attention_heads=16,
209
+ decoder_layers=12,
210
+ decoder_ffn_dim=4096,
211
+ decoder_attention_heads=16,
212
+ encoder_layerdrop=0.0,
213
+ decoder_layerdrop=0.0,
214
+ activation_function="gelu",
215
+ d_model=1024,
216
+ dropout=0.1,
217
+ attention_dropout=0.0,
218
+ activation_dropout=0.0,
219
+ init_std=0.02,
220
+ classifier_dropout=0.0,
221
+ scale_embedding=False,
222
+ use_cache=True,
223
+ num_labels=3,
224
+ pad_token_id=1,
225
+ bos_token_id=0,
226
+ eos_token_id=2,
227
+ is_encoder_decoder=True,
228
+ decoder_start_token_id=2,
229
+ forced_eos_token_id=2,
230
+ **kwargs,
231
+ ):
232
+ self.vocab_size = vocab_size
233
+ self.max_position_embeddings = max_position_embeddings
234
+ self.d_model = d_model
235
+ self.encoder_ffn_dim = encoder_ffn_dim
236
+ self.encoder_layers = encoder_layers
237
+ self.encoder_attention_heads = encoder_attention_heads
238
+ self.decoder_ffn_dim = decoder_ffn_dim
239
+ self.decoder_layers = decoder_layers
240
+ self.decoder_attention_heads = decoder_attention_heads
241
+ self.dropout = dropout
242
+ self.attention_dropout = attention_dropout
243
+ self.activation_dropout = activation_dropout
244
+ self.activation_function = activation_function
245
+ self.init_std = init_std
246
+ self.encoder_layerdrop = encoder_layerdrop
247
+ self.decoder_layerdrop = decoder_layerdrop
248
+ self.classifier_dropout = classifier_dropout
249
+ self.use_cache = use_cache
250
+ self.num_hidden_layers = encoder_layers
251
+ self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
252
+
253
+ super().__init__(
254
+ num_labels=num_labels,
255
+ pad_token_id=pad_token_id,
256
+ bos_token_id=bos_token_id,
257
+ eos_token_id=eos_token_id,
258
+ is_encoder_decoder=is_encoder_decoder,
259
+ decoder_start_token_id=decoder_start_token_id,
260
+ forced_eos_token_id=forced_eos_token_id,
261
+ **kwargs,
262
+ )
263
+
264
+ # ensure backward compatibility for BART CNN models
265
+ if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
266
+ self.forced_bos_token_id = self.bos_token_id
267
+ warnings.warn(
268
+ f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
269
+ "The config can simply be saved and uploaded again to be fixed."
270
+ )
271
+
272
+ class Florence2Config(PretrainedConfig):
273
+ r"""
274
+ This is the configuration class to store the configuration of a [`Florence2ForConditionalGeneration`]. It is used to instantiate an
275
+ Florence-2 model according to the specified arguments, defining the model architecture.
276
+
277
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
278
+ documentation from [`PretrainedConfig`] for more information.
279
+
280
+ Args:
281
+ vision_config (`Florence2VisionConfig`, *optional*):
282
+ Custom vision config or dict
283
+ text_config (`Union[AutoConfig, dict]`, *optional*):
284
+ The config object of the text backbone.
285
+ ignore_index (`int`, *optional*, defaults to -100):
286
+ The ignore index for the loss function.
287
+ vocab_size (`int`, *optional*, defaults to 51289):
288
+ Vocabulary size of the Florence2model. Defines the number of different tokens that can be represented by the
289
+ `inputs_ids` passed when calling [`~Florence2ForConditionalGeneration`]
290
+ projection_dim (`int`, *optional*, defaults to 1024):
291
+ Dimension of the multimodal projection space.
292
+
293
+ Example:
294
+
295
+ ```python
296
+ >>> from transformers import Florence2ForConditionalGeneration, Florence2Config, CLIPVisionConfig, BartConfig
297
+
298
+ >>> # Initializing a clip-like vision config
299
+ >>> vision_config = CLIPVisionConfig()
300
+
301
+ >>> # Initializing a Bart config
302
+ >>> text_config = BartConfig()
303
+
304
+ >>> # Initializing a Florence-2 configuration
305
+ >>> configuration = Florence2Config(vision_config, text_config)
306
+
307
+ >>> # Initializing a model from the florence-2 configuration
308
+ >>> model = Florence2ForConditionalGeneration(configuration)
309
+
310
+ >>> # Accessing the model configuration
311
+ >>> configuration = model.config
312
+ ```"""
313
+
314
+ model_type = "florence2"
315
+ is_composition = False
316
+
317
+ def __init__(
318
+ self,
319
+ vision_config=None,
320
+ text_config=None,
321
+ ignore_index=-100,
322
+ vocab_size=51289,
323
+ projection_dim=1024,
324
+ **kwargs,
325
+ ):
326
+ self.ignore_index = ignore_index
327
+ self.vocab_size = vocab_size
328
+ self.projection_dim = projection_dim
329
+ if vision_config is not None:
330
+ vision_config = PretrainedConfig(**vision_config)
331
+ self.vision_config = vision_config
332
+ self.vocab_size = self.vocab_size
333
+
334
+ self.text_config = text_config
335
+ if text_config is not None:
336
+ self.text_config = Florence2LanguageConfig(**text_config)
337
+
338
+
339
+ super().__init__(**kwargs)
340
+
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "num_beams": 3,
3
+ "early_stopping": false
4
+ }
modeling_florence2.py ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoProcessor": "processing_florence2.Florence2Processor"
4
+ },
5
+ "_valid_processor_keys": [
6
+ "images",
7
+ "do_resize",
8
+ "size",
9
+ "resample",
10
+ "do_rescale",
11
+ "rescale_factor",
12
+ "do_normalize",
13
+ "image_mean",
14
+ "image_std",
15
+ "return_tensors",
16
+ "data_format",
17
+ "input_data_format",
18
+ "do_convert_rgb"
19
+ ],
20
+ "do_convert_rgb": null,
21
+ "do_normalize": true,
22
+ "do_rescale": true,
23
+ "do_resize": true,
24
+ "do_center_crop": false,
25
+ "image_processor_type": "CLIPImageProcessor",
26
+ "image_seq_length": 577,
27
+ "image_mean": [0.485, 0.456, 0.406],
28
+ "image_std": [0.229, 0.224, 0.225],
29
+ "processor_class": "Florence2Processor",
30
+ "resample": 3,
31
+ "size": {
32
+ "height": 768,
33
+ "width":768
34
+ },
35
+ "crop_size": {
36
+ "height": 768,
37
+ "width": 768
38
+ }
39
+ }
processing_florence2.py ADDED
@@ -0,0 +1,1147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """
16
+ Processor class for Florence-2.
17
+ """
18
+
19
+ import re
20
+ import logging
21
+ from typing import List, Optional, Union
22
+ import numpy as np
23
+ import math
24
+
25
+ import torch
26
+
27
+ from transformers.feature_extraction_utils import BatchFeature
28
+ from transformers.image_utils import ImageInput, is_valid_image
29
+ from transformers.processing_utils import ProcessorMixin
30
+ from transformers.tokenization_utils_base import (
31
+ PaddingStrategy,
32
+ PreTokenizedInput,
33
+ TextInput,
34
+ TruncationStrategy,
35
+ )
36
+ from transformers import BartTokenizer, BartTokenizerFast
37
+ from transformers.utils import TensorType
38
+
39
+
40
+ logger = logging.getLogger(__name__)
41
+
42
+ # Copied from transformers.models.idefics2.processing_idefics2.is_url
43
+ def is_url(val) -> bool:
44
+ return isinstance(val, str) and val.startswith("http")
45
+
46
+ # Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url
47
+ def is_image_or_image_url(elem):
48
+ return is_url(elem) or is_valid_image(elem)
49
+
50
+
51
+ def _is_str_or_image(elem):
52
+ return isinstance(elem, (str)) or is_image_or_image_url(elem)
53
+
54
+
55
+ class Florence2Processor(ProcessorMixin):
56
+ r"""
57
+ Constructs a Florence2 processor which wraps a Florence2 image processor and a Florence2 tokenizer into a single processor.
58
+
59
+ [`Florence2Processor`] offers all the functionalities of [`CLIPImageProcessor`] and [`BartTokenizerFast`]. See the
60
+ [`~Florence2Processor.__call__`] and [`~Florence2Processor.decode`] for more information.
61
+
62
+ Args:
63
+ image_processor ([`CLIPImageProcessor`], *optional*):
64
+ The image processor is a required input.
65
+ tokenizer ([`BartTokenizerFast`], *optional*):
66
+ The tokenizer is a required input.
67
+ """
68
+
69
+ attributes = ["image_processor", "tokenizer"]
70
+ image_processor_class = "CLIPImageProcessor"
71
+ tokenizer_class = ("BartTokenizer", "BartTokenizerFast")
72
+
73
+ def __init__(
74
+ self,
75
+ image_processor=None,
76
+ tokenizer=None,
77
+ ):
78
+ if image_processor is None:
79
+ raise ValueError("You need to specify an `image_processor`.")
80
+ if tokenizer is None:
81
+ raise ValueError("You need to specify a `tokenizer`.")
82
+ if not hasattr(image_processor, "image_seq_length"):
83
+ raise ValueError("Image processor is missing an `image_seq_length` attribute.")
84
+
85
+ self.image_seq_length = image_processor.image_seq_length
86
+
87
+ tokens_to_add = {
88
+ 'additional_special_tokens': \
89
+ tokenizer.additional_special_tokens + \
90
+ ['<od>', '</od>', '<ocr>', '</ocr>'] + \
91
+ [f'<loc_{x}>' for x in range(1000)] + \
92
+ ['<cap>', '</cap>', '<ncap>', '</ncap>','<dcap>', '</dcap>', '<grounding>', '</grounding>', '<seg>', '</seg>', '<sep>', '<region_cap>', '</region_cap>', '<region_to_desciption>', '</region_to_desciption>', '<proposal>', '</proposal>', '<poly>', '</poly>', '<and>']
93
+ }
94
+ tokenizer.add_special_tokens(tokens_to_add)
95
+
96
+ self.tasks_answer_post_processing_type = {
97
+ '<OCR>': 'pure_text',
98
+ '<OCR_WITH_REGION>': 'ocr',
99
+ '<CAPTION>': 'pure_text',
100
+ '<DETAILED_CAPTION>': 'pure_text',
101
+ '<MORE_DETAILED_CAPTION>': 'pure_text',
102
+ '<OD>': 'description_with_bboxes',
103
+ '<DENSE_REGION_CAPTION>': 'description_with_bboxes',
104
+ '<CAPTION_TO_PHRASE_GROUNDING>': "phrase_grounding",
105
+ '<REFERRING_EXPRESSION_SEGMENTATION>': 'polygons',
106
+ '<REGION_TO_SEGMENTATION>': 'polygons',
107
+ '<OPEN_VOCABULARY_DETECTION>': 'description_with_bboxes_or_polygons',
108
+ '<REGION_TO_CATEGORY>': 'pure_text',
109
+ '<REGION_TO_DESCRIPTION>': 'pure_text',
110
+ '<REGION_TO_OCR>': 'pure_text',
111
+ '<REGION_PROPOSAL>': 'bboxes'
112
+ }
113
+
114
+ self.task_prompts_without_inputs = {
115
+ '<OCR>': 'What is the text in the image?',
116
+ '<OCR_WITH_REGION>': 'What is the text in the image, with regions?',
117
+ '<CAPTION>': 'What does the image describe?',
118
+ '<DETAILED_CAPTION>': 'Describe in detail what is shown in the image.',
119
+ '<MORE_DETAILED_CAPTION>': 'Describe with a paragraph what is shown in the image.',
120
+ '<OD>': 'Locate the objects with category name in the image.',
121
+ '<DENSE_REGION_CAPTION>': 'Locate the objects in the image, with their descriptions.',
122
+ '<REGION_PROPOSAL>': 'Locate the region proposals in the image.'
123
+ }
124
+
125
+ self.task_prompts_with_input = {
126
+ '<CAPTION_TO_PHRASE_GROUNDING>': "Locate the phrases in the caption: {input}",
127
+ '<REFERRING_EXPRESSION_SEGMENTATION>': 'Locate {input} in the image with mask',
128
+ '<REGION_TO_SEGMENTATION>': 'What is the polygon mask of region {input}',
129
+ '<OPEN_VOCABULARY_DETECTION>': 'Locate {input} in the image.',
130
+ '<REGION_TO_CATEGORY>': 'What is the region {input}?',
131
+ '<REGION_TO_DESCRIPTION>': 'What does the region {input} describe?',
132
+ '<REGION_TO_OCR>': 'What text is in the region {input}?',
133
+ }
134
+
135
+ self.post_processor = Florence2PostProcesser(tokenizer=tokenizer)
136
+
137
+
138
+ super().__init__(image_processor, tokenizer)
139
+
140
+ def _construct_prompts(self, text):
141
+ # replace the task tokens with the task prompts if task token is in the text
142
+ prompts = []
143
+ for _text in text:
144
+ # 1. fixed task prompts without additional inputs
145
+ for task_token, task_prompt in self.task_prompts_without_inputs.items():
146
+ if task_token in _text:
147
+ assert _text == task_token, f"Task token {task_token} should be the only token in the text."
148
+ _text = task_prompt
149
+ break
150
+ # 2. task prompts with additional inputs
151
+ for task_token, task_prompt in self.task_prompts_with_input.items():
152
+ if task_token in _text:
153
+ _text = task_prompt.format(input=_text.replace(task_token, ''))
154
+ break
155
+ prompts.append(_text)
156
+ return prompts
157
+
158
+ def __call__(
159
+ self,
160
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
161
+ images: ImageInput = None,
162
+ tokenize_newline_separately: bool = True,
163
+ padding: Union[bool, str, PaddingStrategy] = False,
164
+ truncation: Union[bool, str, TruncationStrategy] = None,
165
+ max_length=None,
166
+ return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
167
+ do_resize: bool = None,
168
+ do_normalize: bool = None,
169
+ image_mean: Optional[Union[float, List[float]]] = None,
170
+ image_std: Optional[Union[float, List[float]]] = None,
171
+ data_format: Optional["ChannelDimension"] = "channels_first", # noqa: F821
172
+ input_data_format: Optional[
173
+ Union[str, "ChannelDimension"] # noqa: F821
174
+ ] = None,
175
+ resample: "PILImageResampling" = None, # noqa: F821
176
+ do_convert_rgb: bool = None,
177
+ do_thumbnail: bool = None,
178
+ do_align_long_axis: bool = None,
179
+ do_rescale: bool = None,
180
+ ) -> BatchFeature:
181
+ """
182
+ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
183
+ and `kwargs` arguments to BartTokenizerFast's [`~BartTokenizerFast.__call__`] if `text` is not `None` to encode
184
+ the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
185
+ CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
186
+ of the above two methods for more information.
187
+
188
+ Args:
189
+ text (`str`, `List[str]`, `List[List[str]]`):
190
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
191
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
192
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
193
+ images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
194
+ The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
195
+ tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
196
+ number of channels, H and W are image height and width.
197
+ tokenize_newline_separately (`bool`, defaults to `True`):
198
+ Adds a separately tokenized '\n' at the end of the prompt.
199
+ padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
200
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding
201
+ index) among:
202
+ - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
203
+ sequence if provided).
204
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
205
+ acceptable input length for the model if that argument is not provided.
206
+ - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
207
+ lengths).
208
+ max_length (`int`, *optional*):
209
+ Maximum length of the returned list and optionally padding length (see above).
210
+ truncation (`bool`, *optional*):
211
+ Activates truncation to cut input sequences longer than `max_length` to `max_length`.
212
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
213
+ If set, will return tensors of a particular framework. Acceptable values are:
214
+
215
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
216
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
217
+ - `'np'`: Return NumPy `np.ndarray` objects.
218
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
219
+
220
+ Returns:
221
+ [`BatchFeature`]: A [`BatchFeature`] with the following fields:
222
+
223
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. If `suffix`
224
+ is provided, the `input_ids` will also contain the suffix input ids.
225
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
226
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
227
+ `None`).
228
+ - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
229
+ - **labels** -- Labels compatible with training if `suffix` is not None
230
+ """
231
+
232
+ return_token_type_ids = False
233
+
234
+ if images is None:
235
+ raise ValueError("`images` are expected as arguments to a `Florence2Processor` instance.")
236
+ if text is None:
237
+ logger.warning_once(
238
+ "You are using Florence-2 without a text prompt."
239
+ )
240
+ text = ""
241
+
242
+ if isinstance(text, List) and isinstance(images, List):
243
+ if len(images) < len(text):
244
+ raise ValueError(
245
+ f"Received {len(images)} images for {len(text)} prompts. Each prompt should be associated with an image."
246
+ )
247
+ if _is_str_or_image(text):
248
+ text = [text]
249
+ elif isinstance(text, list) and _is_str_or_image(text[0]):
250
+ pass
251
+
252
+ pixel_values = self.image_processor(
253
+ images,
254
+ do_resize=do_resize,
255
+ do_normalize=do_normalize,
256
+ return_tensors=return_tensors,
257
+ image_mean=image_mean,
258
+ image_std=image_std,
259
+ input_data_format=input_data_format,
260
+ data_format=data_format,
261
+ resample=resample,
262
+ do_convert_rgb=do_convert_rgb,
263
+ )["pixel_values"]
264
+
265
+ if max_length is not None:
266
+ max_length -= self.image_seq_length # max_length has to account for the image tokens
267
+
268
+ text = self._construct_prompts(text)
269
+
270
+ inputs = self.tokenizer(
271
+ text,
272
+ return_tensors=return_tensors,
273
+ padding=padding,
274
+ max_length=max_length,
275
+ truncation=truncation,
276
+ return_token_type_ids=return_token_type_ids,
277
+ )
278
+
279
+ return_data = {**inputs, "pixel_values": pixel_values}
280
+
281
+ if return_token_type_ids:
282
+ labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100)
283
+ return_data.update({"labels": labels})
284
+ return BatchFeature(data=return_data)
285
+
286
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Florence2
287
+ def batch_decode(self, *args, **kwargs):
288
+ """
289
+ This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
290
+ refer to the docstring of this method for more information.
291
+ """
292
+ return self.tokenizer.batch_decode(*args, **kwargs)
293
+
294
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Florence2
295
+ def decode(self, *args, **kwargs):
296
+ """
297
+ This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
298
+ the docstring of this method for more information.
299
+ """
300
+ return self.tokenizer.decode(*args, **kwargs)
301
+
302
+ @property
303
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Florence2
304
+ def model_input_names(self):
305
+ tokenizer_input_names = self.tokenizer.model_input_names
306
+ image_processor_input_names = self.image_processor.model_input_names
307
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
308
+
309
+ def post_process_generation(self, text=None, sequence=None, transition_beam_score=None, task=None, image_size=None):
310
+ """
311
+ Post-process the output of the model to each of the task outputs.
312
+
313
+ Args:
314
+ text (`str`): The text to post-process.
315
+ task (`str`): The task to post-process the text for.
316
+ image_size (`Tuple[int, int]`): The size of the image. height x width.
317
+ """
318
+
319
+ task_answer_post_processing_type = self.tasks_answer_post_processing_type.get(task, 'pure_text')
320
+ task_answer = self.post_processor(
321
+ text=text,
322
+ sequence=sequence,
323
+ transition_beam_score=transition_beam_score,
324
+ image_size=image_size,
325
+ parse_tasks=task_answer_post_processing_type,
326
+ )[task_answer_post_processing_type]
327
+
328
+ if task_answer_post_processing_type == 'pure_text':
329
+ final_answer = task_answer
330
+ # remove the special tokens
331
+ final_answer = final_answer.replace('<s>', '').replace('</s>', '')
332
+ elif task_answer_post_processing_type in ['od', 'description_with_bboxes', 'bboxes']:
333
+ od_instances = task_answer
334
+ bboxes_od = [_od_instance['bbox'] for _od_instance in od_instances]
335
+ labels_od = [str(_od_instance['cat_name']) for _od_instance in od_instances]
336
+ final_answer = {'bboxes': bboxes_od, 'labels': labels_od}
337
+ if len(od_instances) and 'score' in od_instances[0]:
338
+ scores_od = [_od_instance['score'] for _od_instance in od_instances]
339
+ final_answer['scores'] = scores_od
340
+ elif task_answer_post_processing_type in ['ocr']:
341
+ bboxes = [_od_instance['quad_box'] for _od_instance in task_answer]
342
+ labels = [str(_od_instance['text']) for _od_instance in task_answer]
343
+ final_answer = {'quad_boxes': bboxes, 'labels': labels}
344
+ elif task_answer_post_processing_type in ['phrase_grounding']:
345
+ bboxes = []
346
+ labels = []
347
+ for _grounded_phrase in task_answer:
348
+ for _bbox in _grounded_phrase['bbox']:
349
+ bboxes.append(_bbox)
350
+ labels.append(_grounded_phrase['cat_name'])
351
+ final_answer = {'bboxes': bboxes, 'labels': labels}
352
+ elif task_answer_post_processing_type in ['description_with_polygons', 'polygons']:
353
+ labels = []
354
+ polygons = []
355
+ for result in task_answer:
356
+ label = result['cat_name']
357
+ _polygons = result['polygons']
358
+ labels.append(label)
359
+ polygons.append(_polygons)
360
+ final_answer = {'polygons': polygons, 'labels': labels}
361
+ elif task_answer_post_processing_type in ['description_with_bboxes_or_polygons']:
362
+ bboxes = []
363
+ bboxes_labels = []
364
+ polygons = []
365
+ polygons_labels = []
366
+ for result in task_answer:
367
+ label = result['cat_name']
368
+ if 'polygons' in result:
369
+ _polygons = result['polygons']
370
+ polygons.append(_polygons)
371
+ polygons_labels.append(label)
372
+ else:
373
+ _bbox = result['bbox']
374
+ bboxes.append(_bbox)
375
+ bboxes_labels.append(label)
376
+ final_answer = {'bboxes': bboxes, 'bboxes_labels': bboxes_labels, 'polygons': polygons, 'polygons_labels': polygons_labels}
377
+ else:
378
+ raise ValueError('Unknown task answer post processing type: {}'.format(task_answer_post_processing_type))
379
+
380
+ final_answer = {
381
+ task: final_answer}
382
+ return final_answer
383
+
384
+ class BoxQuantizer(object):
385
+ def __init__(self, mode, bins):
386
+ self.mode = mode
387
+ self.bins = bins
388
+
389
+ def quantize(self, boxes: torch.Tensor, size):
390
+ bins_w, bins_h = self.bins # Quantization bins.
391
+ size_w, size_h = size # Original image size.
392
+ size_per_bin_w = size_w / bins_w
393
+ size_per_bin_h = size_h / bins_h
394
+ xmin, ymin, xmax, ymax = boxes.split(1, dim=-1) # Shape: 4 * [N, 1].
395
+
396
+ if self.mode == 'floor':
397
+ quantized_xmin = (
398
+ xmin / size_per_bin_w).floor().clamp(0, bins_w - 1)
399
+ quantized_ymin = (
400
+ ymin / size_per_bin_h).floor().clamp(0, bins_h - 1)
401
+ quantized_xmax = (
402
+ xmax / size_per_bin_w).floor().clamp(0, bins_w - 1)
403
+ quantized_ymax = (
404
+ ymax / size_per_bin_h).floor().clamp(0, bins_h - 1)
405
+
406
+ elif self.mode == 'round':
407
+ raise NotImplementedError()
408
+
409
+ else:
410
+ raise ValueError('Incorrect quantization type.')
411
+
412
+ quantized_boxes = torch.cat(
413
+ (quantized_xmin, quantized_ymin, quantized_xmax, quantized_ymax), dim=-1
414
+ ).int()
415
+
416
+ return quantized_boxes
417
+
418
+ def dequantize(self, boxes: torch.Tensor, size):
419
+ bins_w, bins_h = self.bins # Quantization bins.
420
+ size_w, size_h = size # Original image size.
421
+ size_per_bin_w = size_w / bins_w
422
+ size_per_bin_h = size_h / bins_h
423
+ xmin, ymin, xmax, ymax = boxes.split(1, dim=-1) # Shape: 4 * [N, 1].
424
+
425
+ if self.mode == 'floor':
426
+ # Add 0.5 to use the center position of the bin as the coordinate.
427
+ dequantized_xmin = (xmin + 0.5) * size_per_bin_w
428
+ dequantized_ymin = (ymin + 0.5) * size_per_bin_h
429
+ dequantized_xmax = (xmax + 0.5) * size_per_bin_w
430
+ dequantized_ymax = (ymax + 0.5) * size_per_bin_h
431
+
432
+ elif self.mode == 'round':
433
+ raise NotImplementedError()
434
+
435
+ else:
436
+ raise ValueError('Incorrect quantization type.')
437
+
438
+ dequantized_boxes = torch.cat(
439
+ (dequantized_xmin, dequantized_ymin,
440
+ dequantized_xmax, dequantized_ymax), dim=-1
441
+ )
442
+
443
+ return dequantized_boxes
444
+
445
+
446
+ class CoordinatesQuantizer(object):
447
+ """
448
+ Quantize coornidates (Nx2)
449
+ """
450
+
451
+ def __init__(self, mode, bins):
452
+ self.mode = mode
453
+ self.bins = bins
454
+
455
+ def quantize(self, coordinates: torch.Tensor, size):
456
+ bins_w, bins_h = self.bins # Quantization bins.
457
+ size_w, size_h = size # Original image size.
458
+ size_per_bin_w = size_w / bins_w
459
+ size_per_bin_h = size_h / bins_h
460
+ assert coordinates.shape[-1] == 2, 'coordinates should be shape (N, 2)'
461
+ x, y = coordinates.split(1, dim=-1) # Shape: 4 * [N, 1].
462
+
463
+ if self.mode == 'floor':
464
+ quantized_x = (x / size_per_bin_w).floor().clamp(0, bins_w - 1)
465
+ quantized_y = (y / size_per_bin_h).floor().clamp(0, bins_h - 1)
466
+
467
+ elif self.mode == 'round':
468
+ raise NotImplementedError()
469
+
470
+ else:
471
+ raise ValueError('Incorrect quantization type.')
472
+
473
+ quantized_coordinates = torch.cat(
474
+ (quantized_x, quantized_y), dim=-1
475
+ ).int()
476
+
477
+ return quantized_coordinates
478
+
479
+ def dequantize(self, coordinates: torch.Tensor, size):
480
+ bins_w, bins_h = self.bins # Quantization bins.
481
+ size_w, size_h = size # Original image size.
482
+ size_per_bin_w = size_w / bins_w
483
+ size_per_bin_h = size_h / bins_h
484
+ assert coordinates.shape[-1] == 2, 'coordinates should be shape (N, 2)'
485
+ x, y = coordinates.split(1, dim=-1) # Shape: 4 * [N, 1].
486
+
487
+ if self.mode == 'floor':
488
+ # Add 0.5 to use the center position of the bin as the coordinate.
489
+ dequantized_x = (x + 0.5) * size_per_bin_w
490
+ dequantized_y = (y + 0.5) * size_per_bin_h
491
+
492
+ elif self.mode == 'round':
493
+ raise NotImplementedError()
494
+
495
+ else:
496
+ raise ValueError('Incorrect quantization type.')
497
+
498
+ dequantized_coordinates = torch.cat(
499
+ (dequantized_x, dequantized_y), dim=-1
500
+ )
501
+
502
+ return dequantized_coordinates
503
+
504
+
505
+ class Florence2PostProcesser(object):
506
+ r"""
507
+ Florence-2 post process for converting text prediction to various tasks results.
508
+
509
+ Args:
510
+ config: A dict of configs.
511
+ tokenizer: A tokenizer for decoding text to spans.
512
+ sample config:
513
+ UNIFIED_POST_PROCESS:
514
+ # commom configs
515
+ NUM_BBOX_HEIGHT_BINS: 1000
516
+ NUM_BBOX_WIDTH_BINS: 1000
517
+ COORDINATES_HEIGHT_BINS: 1000
518
+ COORDINATES_WIDTH_BINS: 1000
519
+ # task specific configs, override the common configs
520
+ PRASE_TASKS:
521
+ - TASK_NAME: 'video_dense_caption'
522
+ PATTERN: 'r<time_(\d+)><time_(\d+)>([a-zA-Z0-9 ]+)'
523
+ SCORE_MODE: 'avg_cat_name_scores'
524
+ NUM_BINS: 100
525
+ - TASK_NAME: 'od'
526
+ PATTERN: 'r<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>([a-zA-Z0-9 ]+)'
527
+ SCORE_MODE: 'avg_cat_name_scores'
528
+
529
+ Returns:
530
+ parsed_dict (dict): A dict of parsed results.
531
+ """
532
+ def __init__(
533
+ self,
534
+ tokenizer=None
535
+ ):
536
+ parse_tasks = []
537
+ parse_task_configs = {}
538
+ config = self._create_default_config()
539
+ for task in config['PARSE_TASKS']:
540
+ parse_tasks.append(task['TASK_NAME'])
541
+ parse_task_configs[task['TASK_NAME']] = task
542
+
543
+ self.config = config
544
+ self.parse_tasks = parse_tasks
545
+ self.parse_tasks_configs = parse_task_configs
546
+
547
+ self.tokenizer = tokenizer
548
+ if self.tokenizer is not None:
549
+ self.all_special_tokens = set(self.tokenizer.all_special_tokens)
550
+
551
+ self.init_quantizers()
552
+ self.black_list_of_phrase_grounding = self._create_black_list_of_phrase_grounding()
553
+
554
+ def _create_black_list_of_phrase_grounding(self):
555
+ black_list = {}
556
+
557
+ if 'phrase_grounding' in self.parse_tasks and self.parse_tasks_configs['phrase_grounding']['FILTER_BY_BLACK_LIST']:
558
+ black_list = set(
559
+ ['it', 'I', 'me', 'mine',
560
+ 'you', 'your', 'yours',
561
+ 'he', 'him', 'his',
562
+ 'she', 'her', 'hers',
563
+ 'they', 'them', 'their', 'theirs',
564
+ 'one', 'oneself',
565
+ 'we', 'us', 'our', 'ours',
566
+ 'you', 'your', 'yours',
567
+ 'they', 'them', 'their', 'theirs',
568
+ 'mine', 'yours', 'his', 'hers', 'its',
569
+ 'ours', 'yours', 'theirs',
570
+ 'myself', 'yourself', 'himself', 'herself', 'itself',
571
+ 'ourselves', 'yourselves', 'themselves',
572
+ 'this', 'that',
573
+ 'these', 'those',
574
+ 'who', 'whom', 'whose', 'which', 'what',
575
+ 'who', 'whom', 'whose', 'which', 'that',
576
+ 'all', 'another', 'any', 'anybody', 'anyone', 'anything',
577
+ 'each', 'everybody', 'everyone', 'everything',
578
+ 'few', 'many', 'nobody', 'none', 'one', 'several',
579
+ 'some', 'somebody', 'someone', 'something',
580
+ 'each other', 'one another',
581
+ 'myself', 'yourself', 'himself', 'herself', 'itself',
582
+ 'ourselves', 'yourselves', 'themselves',
583
+ 'the image', 'image', 'images', 'the', 'a', 'an', 'a group',
584
+ 'other objects', 'lots', 'a set',
585
+ ]
586
+ )
587
+
588
+ return black_list
589
+
590
+ def _create_default_config(self):
591
+ config = {
592
+ 'NUM_BBOX_HEIGHT_BINS': 1000,
593
+ 'NUM_BBOX_WIDTH_BINS': 1000,
594
+ 'BOX_QUANTIZATION_MODE': 'floor',
595
+ 'COORDINATES_HEIGHT_BINS': 1000,
596
+ 'COORDINATES_WIDTH_BINS': 1000,
597
+ 'COORDINATES_QUANTIZATION_MODE': 'floor',
598
+ 'PARSE_TASKS': [
599
+ {
600
+ 'TASK_NAME': 'od',
601
+ 'PATTERN': r'([a-zA-Z0-9 ]+)<loc_(\\d+)><loc_(\\d+)><loc_(\\d+)><loc_(\\d+)>',
602
+ 'SCORE_MODE': 'avg_loc_scores'
603
+ },
604
+ {
605
+ 'TASK_NAME': 'ocr',
606
+ 'PATTERN': r'(.+?)<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>',
607
+ 'AREA_THRESHOLD': 0.00
608
+ },
609
+ {
610
+ 'TASK_NAME': 'phrase_grounding',
611
+ 'FILTER_BY_BLACK_LIST': True
612
+ },
613
+ {
614
+ 'TASK_NAME': 'pure_text',
615
+ },
616
+ {
617
+ 'TASK_NAME': 'description_with_bboxes',
618
+ 'SCORE_MODE': 'avg_loc_scores'
619
+ },
620
+ {
621
+ 'TASK_NAME': 'description_with_polygons',
622
+ },
623
+ {
624
+ 'TASK_NAME': 'polygons',
625
+ },
626
+ {
627
+ 'TASK_NAME': 'bboxes',
628
+ },
629
+ {
630
+ 'TASK_NAME': 'description_with_bboxes_or_polygons',
631
+ }
632
+ ]
633
+ }
634
+
635
+ return config
636
+
637
+ def init_quantizers(self):
638
+ # we have box_quantizer (od, grounding) and coordinates_quantizer (ocr, referring_segmentation)
639
+ num_bbox_height_bins = self.config.get('NUM_BBOX_HEIGHT_BINS', 1000)
640
+ num_bbox_width_bins = self.config.get('NUM_BBOX_WIDTH_BINS', 1000)
641
+ box_quantization_mode = self.config.get('BOX_QUANTIZATION_MODE', 'floor')
642
+ self.box_quantizer = BoxQuantizer(
643
+ box_quantization_mode,
644
+ (num_bbox_width_bins, num_bbox_height_bins),
645
+ )
646
+
647
+ num_bbox_height_bins = self.config['COORDINATES_HEIGHT_BINS'] if 'COORDINATES_HEIGHT_BINS' in self.config else self.config.get('NUM_BBOX_HEIGHT_BINS', 1000)
648
+ num_bbox_width_bins = self.config['COORDINATES_WIDTH_BINS'] if 'COORDINATES_WIDTH_BINS' in self.config else self.config.get('NUM_BBOX_WIDTH_BINS', 1000)
649
+ box_quantization_mode = self.config.get('COORDINATES_QUANTIZATION_MODE') if 'COORDINATES_QUANTIZATION_MODE' in self.config else self.config.get('BOX_QUANTIZATION_MODE', 'floor')
650
+ self.coordinates_quantizer = CoordinatesQuantizer(
651
+ box_quantization_mode,
652
+ (num_bbox_width_bins, num_bbox_height_bins),
653
+ )
654
+
655
+ def decode_with_spans(self, tokenizer, token_ids):
656
+ filtered_tokens = tokenizer.convert_ids_to_tokens(
657
+ token_ids, skip_special_tokens=False)
658
+ assert len(filtered_tokens) == len(token_ids)
659
+ sub_texts = []
660
+ for token in filtered_tokens:
661
+ if token in self.all_special_tokens:
662
+ sub_texts.append(token)
663
+ else:
664
+ if isinstance(tokenizer, (BartTokenizer, BartTokenizerFast)):
665
+ sub_text = tokenizer.convert_tokens_to_string([token])
666
+ else:
667
+ raise ValueError(f'type {type(tokenizer)} not supported')
668
+ sub_texts.append(sub_text)
669
+
670
+ text = ''
671
+ spans = []
672
+ for sub_text in sub_texts:
673
+ span = (len(text), len(text) + len(sub_text)) # [start index, end index).
674
+ text += sub_text
675
+ spans.append(span)
676
+ return text, spans
677
+
678
+ def parse_od_from_text_and_spans(
679
+ self,
680
+ text,
681
+ pattern,
682
+ image_size,
683
+ phrase_centric=False
684
+ ):
685
+ parsed = list(re.finditer(pattern, text))
686
+
687
+ instances = []
688
+ for i in range(len(parsed)):
689
+ # Prepare instance.
690
+ instance = {}
691
+
692
+ if phrase_centric:
693
+ bbox_bins = [int(parsed[i].group(j)) for j in range(2, 6)]
694
+ else:
695
+ bbox_bins = [int(parsed[i].group(j)) for j in range(1, 5)]
696
+ instance['bbox'] = self.box_quantizer.dequantize(
697
+ boxes=torch.tensor(bbox_bins),
698
+ size=image_size
699
+ ).tolist()
700
+
701
+ if phrase_centric:
702
+ instance['cat_name'] = parsed[i].group(1).lower().strip()
703
+ else:
704
+ instance['cat_name'] = parsed[i].group(5).lower().strip()
705
+ instances.append(instance)
706
+
707
+ return instances
708
+
709
+ def parse_ocr_from_text_and_spans(self,
710
+ text,
711
+ pattern,
712
+ image_size,
713
+ area_threshold=-1.0,
714
+ ):
715
+ bboxes = []
716
+ labels = []
717
+ text = text.replace('<s>', '')
718
+ # ocr with regions
719
+ parsed = re.findall(pattern, text)
720
+ instances = []
721
+ image_width, image_height = image_size
722
+
723
+ for ocr_line in parsed:
724
+ ocr_content = ocr_line[0]
725
+ quad_box = ocr_line[1:]
726
+ quad_box = [int(i) for i in quad_box]
727
+ quad_box = self.coordinates_quantizer.dequantize(
728
+ torch.tensor(np.array(quad_box).reshape(-1, 2)),
729
+ size=image_size
730
+ ).reshape(-1).tolist()
731
+
732
+ if area_threshold > 0:
733
+ x_coords = [i for i in quad_box[0::2]]
734
+ y_coords = [i for i in quad_box[1::2]]
735
+
736
+ # apply the Shoelace formula
737
+ area = 0.5 * abs(sum(x_coords[i] * y_coords[i + 1] - x_coords[i + 1] * y_coords[i] for i in range(4 - 1)))
738
+
739
+ if area < (image_width * image_height) * area_threshold:
740
+ continue
741
+
742
+ bboxes.append(quad_box)
743
+ labels.append(ocr_content)
744
+ instances.append({
745
+ 'quad_box': quad_box,
746
+ 'text': ocr_content,
747
+ })
748
+ return instances
749
+
750
+ def parse_phrase_grounding_from_text_and_spans(self, text, pattern, image_size):
751
+ # ignore <s> </s> and <pad>
752
+ cur_span = 0
753
+ if text.startswith('<s>'):
754
+ cur_span += 3
755
+
756
+ text = text.replace('<s>', '')
757
+ text = text.replace('</s>', '')
758
+ text = text.replace('<pad>', '')
759
+
760
+ pattern = r"([^<]+(?:<loc_\d+>){4,})"
761
+ phrases = re.findall(pattern, text)
762
+
763
+ # pattern should be text pattern and od pattern
764
+ pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_)'
765
+ box_pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>'
766
+
767
+ instances = []
768
+ for pharse_text in phrases:
769
+ phrase_text_strip = pharse_text.replace('<ground>', '', 1)
770
+ phrase_text_strip = pharse_text.replace('<obj>', '', 1)
771
+
772
+ if phrase_text_strip == '':
773
+ cur_span += len(pharse_text)
774
+ continue
775
+
776
+ # Prepare instance.
777
+ instance = {}
778
+
779
+ # parse phrase, get string
780
+ phrase = re.search(pattern, phrase_text_strip)
781
+ if phrase is None:
782
+ cur_span += len(pharse_text)
783
+ continue
784
+
785
+ # parse bboxes by box_pattern
786
+ bboxes_parsed = list(re.finditer(box_pattern, pharse_text))
787
+ if len(bboxes_parsed) == 0:
788
+ cur_span += len(pharse_text)
789
+ continue
790
+
791
+ phrase = phrase.group()
792
+ # remove leading and trailing spaces
793
+ phrase = phrase.strip()
794
+
795
+ if phrase in self.black_list_of_phrase_grounding:
796
+ cur_span += len(pharse_text)
797
+ continue
798
+
799
+ # a list of list
800
+ bbox_bins = [[int(_bboxes_parsed.group(j)) for j in range(1, 5)] for _bboxes_parsed in bboxes_parsed]
801
+ instance['bbox'] = self.box_quantizer.dequantize(
802
+ boxes=torch.tensor(bbox_bins),
803
+ size=image_size
804
+ ).tolist()
805
+
806
+ # exclude non-ascii characters
807
+ phrase = phrase.encode('ascii',errors='ignore').decode('ascii')
808
+ instance['cat_name'] = phrase
809
+
810
+ instances.append(instance)
811
+
812
+ return instances
813
+
814
+ def parse_description_with_bboxes_from_text_and_spans(
815
+ self,
816
+ text,
817
+ spans=None,
818
+ scores=None,
819
+ score_mode=None,
820
+ pattern=None,
821
+ image_size=None,
822
+ allow_empty_phrase=False
823
+ ):
824
+ def find_matched_token_indices(cur_span, token_spans):
825
+ inds = []
826
+ for i, token_span in enumerate(token_spans):
827
+ if not (token_span[1] <= cur_span[0] or token_span[0] >= cur_span[1]):
828
+ inds.append(i)
829
+ return inds
830
+
831
+ cur_span = 0
832
+ if text.startswith('<s>'):
833
+ cur_span += 3
834
+
835
+ text = text.replace('<s>', '')
836
+ text = text.replace('</s>', '')
837
+ text = text.replace('<pad>', '')
838
+
839
+ if allow_empty_phrase:
840
+ pattern = rf"(?:(?:<loc_\d+>){{4,}})"
841
+ else:
842
+ pattern = r"([^<]+(?:<loc_\d+>){4,})"
843
+ phrases = re.findall(pattern, text)
844
+
845
+ # pattern should be text pattern and od pattern
846
+ pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_)'
847
+ box_pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>'
848
+
849
+ instances = []
850
+ for pharse_text in phrases:
851
+ phrase_text_strip = pharse_text.replace('<ground>', '', 1)
852
+ phrase_text_strip = pharse_text.replace('<obj>', '', 1)
853
+
854
+ if phrase_text_strip == '' and not allow_empty_phrase:
855
+ cur_span += len(pharse_text)
856
+ continue
857
+
858
+ # parse phrase, get string
859
+ phrase = re.search(pattern, phrase_text_strip)
860
+ if phrase is None:
861
+ cur_span += len(pharse_text)
862
+ continue
863
+
864
+ phrase_span = phrase.span()
865
+ phrase = phrase.group()
866
+ # remove leading and trailing spaces
867
+ phrase = phrase.strip()
868
+
869
+ # parse bboxes by box_pattern
870
+ bboxes_parsed = list(re.finditer(box_pattern, pharse_text))
871
+ if len(bboxes_parsed) == 0:
872
+ cur_span += len(pharse_text)
873
+ continue
874
+
875
+ # a list of list
876
+ bbox_bins = [[int(_bboxes_parsed.group(j)) for j in range(1, 5)] for _bboxes_parsed in bboxes_parsed]
877
+
878
+ bboxes = self.box_quantizer.dequantize(
879
+ boxes=torch.tensor(bbox_bins),
880
+ size=image_size
881
+ ).tolist()
882
+
883
+ if score_mode == 'avg_loc_scores':
884
+ if spans is None or scores is None:
885
+ all_scores = None
886
+ else:
887
+ bbox_end_spans = [_bboxes_parsed.span(0) for _bboxes_parsed in bboxes_parsed]
888
+ all_scores = []
889
+ for _spans in bbox_end_spans:
890
+ token_inds = find_matched_token_indices((_spans[0] + cur_span, _spans[1]+ cur_span), spans)
891
+ loc_scores = [scores[token_i] for token_i in token_inds]
892
+ score = sum(loc_scores) / len(loc_scores)
893
+ all_scores.append(score)
894
+ elif score_mode == 'avg_cat_name_scores':
895
+ if spans is None or scores is None:
896
+ all_scores = None
897
+ else:
898
+ cat_name_token_inds = find_matched_token_indices((phrase_span[0] + cur_span, phrase_span[1]+cur_span), spans)
899
+ cat_name_scores = [scores[token_i] for token_i in cat_name_token_inds]
900
+ score = sum(cat_name_scores) / len(cat_name_scores)
901
+ all_scores = [score] * len(bboxes)
902
+ elif score_mode is None:
903
+ all_scores = None
904
+ else:
905
+ raise ValueError('Unknown score mode: {}'.format(score_mode))
906
+
907
+ phrase = phrase.encode('ascii',errors='ignore').decode('ascii')
908
+ for _idx, _bboxes in enumerate(bboxes):
909
+ # Prepare instance.
910
+ instance = {}
911
+ instance['bbox'] = _bboxes
912
+ # exclude non-ascii characters
913
+ instance['cat_name'] = phrase
914
+ if all_scores is not None:
915
+ instance['score'] = math.exp(all_scores[_idx])
916
+ instances.append(instance)
917
+
918
+ cur_span += len(pharse_text)
919
+
920
+ return instances
921
+
922
+ def parse_description_with_polygons_from_text_and_spans(self, text, pattern, image_size,
923
+ allow_empty_phrase=False,
924
+ polygon_sep_token='<sep>',
925
+ polygon_start_token='<poly>',
926
+ polygon_end_token='</poly>',
927
+ with_box_at_start=False,
928
+ ):
929
+
930
+ # ref_seg format: '<expression><x1><y1><x2><y2><><><sep><><><><>'
931
+ # ignore <s> </s> and <pad>
932
+
933
+ text = text.replace('<s>', '')
934
+ text = text.replace('</s>', '')
935
+ text = text.replace('<pad>', '')
936
+
937
+ if allow_empty_phrase:
938
+ pattern = rf"(?:(?:<loc_\d+>|{re.escape(polygon_sep_token)}|{re.escape(polygon_start_token)}|{re.escape(polygon_end_token)}){{4,}})"
939
+ else:
940
+ # [^<]+: This part matches one or more characters that are not the < symbol.
941
+ # The ^ inside the square brackets [] is a negation, meaning it matches anything except <.
942
+ #
943
+ pattern = rf"([^<]+(?:<loc_\d+>|{re.escape(polygon_sep_token)}|{re.escape(polygon_start_token)}|{re.escape(polygon_end_token)}){{4,}})"
944
+ phrases = re.findall(pattern, text)
945
+
946
+ phrase_string_pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_|<poly>)'
947
+ box_pattern = rf'((?:<loc_\d+>)+)(?:{re.escape(polygon_sep_token)}|$)'
948
+
949
+ # one polygons instance is separated by polygon_start_token and polygon_end_token
950
+ polygons_instance_pattern = rf'{re.escape(polygon_start_token)}(.*?){re.escape(polygon_end_token)}'
951
+
952
+ instances = []
953
+ for phrase_text in phrases:
954
+
955
+ # exclude loc_\d+>
956
+ # need to get span if want to include category score
957
+ phrase_text_strip = re.sub(r'^loc_\d+>', '', phrase_text, count=1)
958
+
959
+ # phrase = phrase.replace('<poly>', '')
960
+ # phrase = phrase.replace('poly>', '')
961
+
962
+ if phrase_text_strip == '' and not allow_empty_phrase:
963
+ continue
964
+
965
+
966
+ # parse phrase, get string
967
+ phrase = re.search(phrase_string_pattern, phrase_text_strip)
968
+ if phrase is None:
969
+ continue
970
+ phrase = phrase.group()
971
+ # remove leading and trailing spaces
972
+ phrase = phrase.strip()
973
+
974
+ # parse bboxes by box_pattern
975
+
976
+ # split by polygon_start_token and polygon_end_token first using polygons_instance_pattern
977
+ if polygon_start_token in phrase_text and polygon_end_token in phrase_text:
978
+ polygons_instances_parsed = list(re.finditer(polygons_instance_pattern, phrase_text))
979
+ else:
980
+ polygons_instances_parsed = [phrase_text]
981
+
982
+ for _polygons_instances_parsed in polygons_instances_parsed:
983
+ # Prepare instance.
984
+ instance = {}
985
+
986
+ # polygons_parsed= list(re.finditer(box_pattern, phrase_text))
987
+ if isinstance(_polygons_instances_parsed, str):
988
+ polygons_parsed= list(re.finditer(box_pattern, _polygons_instances_parsed))
989
+ else:
990
+ polygons_parsed= list(re.finditer(box_pattern, _polygons_instances_parsed.group(1)))
991
+ if len(polygons_parsed) == 0:
992
+ continue
993
+
994
+ # a list of list (polygon)
995
+ bbox = []
996
+ polygons = []
997
+ for _polygon_parsed in polygons_parsed:
998
+ # group 1: whole <loc_\d+>...</loc_\d+>
999
+ _polygon = _polygon_parsed.group(1)
1000
+ # parse into list of int
1001
+ _polygon = [int(_loc_parsed.group(1)) for _loc_parsed in re.finditer(r'<loc_(\d+)>', _polygon)]
1002
+ if with_box_at_start and len(bbox) == 0:
1003
+ if len(_polygon) > 4:
1004
+ # no valid bbox prediction
1005
+ bbox = _polygon[:4]
1006
+ _polygon = _polygon[4:]
1007
+ else:
1008
+ bbox = [0, 0, 0, 0]
1009
+ # abandon last element if is not paired
1010
+ if len(_polygon) % 2 == 1:
1011
+ _polygon = _polygon[:-1]
1012
+
1013
+ # reshape into (n, 2)
1014
+ _polygon = self.coordinates_quantizer.dequantize(
1015
+ torch.tensor(np.array(_polygon).reshape(-1, 2)),
1016
+ size=image_size
1017
+ ).reshape(-1).tolist()
1018
+ # reshape back
1019
+ polygons.append(_polygon)
1020
+
1021
+ instance['cat_name'] = phrase
1022
+ instance['polygons'] = polygons
1023
+ if len(bbox) != 0:
1024
+ instance['bbox'] = self.box_quantizer.dequantize(
1025
+ boxes=torch.tensor([bbox]),
1026
+ size=image_size
1027
+ ).tolist()[0]
1028
+
1029
+ instances.append(instance)
1030
+
1031
+ return instances
1032
+
1033
+ def __call__(
1034
+ self,
1035
+ text=None,
1036
+ sequence=None,
1037
+ transition_beam_score=None,
1038
+ image_size=None,
1039
+ parse_tasks=None,
1040
+ ):
1041
+ """
1042
+ Args:
1043
+ text: model outputs
1044
+ image_size: (width, height)
1045
+ parse_tasks: a list of tasks to parse, if None, parse all tasks.
1046
+
1047
+ """
1048
+ if parse_tasks is not None:
1049
+ if isinstance(parse_tasks, str):
1050
+ parse_tasks = [parse_tasks]
1051
+ for _parse_task in parse_tasks:
1052
+ assert _parse_task in self.parse_tasks, f'parse task {_parse_task} not supported'
1053
+
1054
+ # sequence or text should be provided
1055
+ assert sequence is not None or text is not None, 'sequence or text should be provided'
1056
+ assert sequence is None or text is None, 'only one of sequence and text should be provided'
1057
+
1058
+ if sequence is not None:
1059
+ sequence = sequence.tolist()[1:]
1060
+ text, spans = self.decode_with_spans(self.tokenizer, sequence)
1061
+ if transition_beam_score is not None:
1062
+ transition_beam_score = transition_beam_score.tolist()
1063
+ assert len(sequence) == len(transition_beam_score)
1064
+ else:
1065
+ spans = None
1066
+ transition_beam_score = None
1067
+
1068
+ parsed_dict = {
1069
+ 'text': text
1070
+ }
1071
+
1072
+ for task in self.parse_tasks:
1073
+ if parse_tasks is not None and task not in parse_tasks:
1074
+ continue
1075
+
1076
+ pattern = self.parse_tasks_configs[task].get('PATTERN', None)
1077
+ score_mode = self.parse_tasks_configs[task].get('SCORE_MODE', None)
1078
+
1079
+ if task == 'ocr':
1080
+ instances = self.parse_ocr_from_text_and_spans(
1081
+ text,
1082
+ pattern=pattern,
1083
+ image_size=image_size,
1084
+ area_threshold=self.parse_tasks_configs[task].get('AREA_THRESHOLD', 0.0),
1085
+ )
1086
+ parsed_dict['ocr'] = instances
1087
+ elif task == 'phrase_grounding':
1088
+ instances = self.parse_phrase_grounding_from_text_and_spans(
1089
+ text,
1090
+ pattern=pattern,
1091
+ image_size=image_size,
1092
+ )
1093
+ parsed_dict['phrase_grounding'] = instances
1094
+ elif task == 'pure_text':
1095
+ parsed_dict['pure_text'] = text
1096
+ elif task == 'description_with_bboxes':
1097
+ instances = self.parse_description_with_bboxes_from_text_and_spans(
1098
+ text,
1099
+ spans=spans,
1100
+ scores=transition_beam_score,
1101
+ score_mode=score_mode,
1102
+ pattern=pattern,
1103
+ image_size=image_size,
1104
+ )
1105
+ parsed_dict['description_with_bboxes'] = instances
1106
+ elif task == 'description_with_polygons':
1107
+ instances = self.parse_description_with_polygons_from_text_and_spans(
1108
+ text,
1109
+ pattern=pattern,
1110
+ image_size=image_size,
1111
+ )
1112
+ parsed_dict['description_with_polygons'] = instances
1113
+ elif task == 'polygons':
1114
+ instances = self.parse_description_with_polygons_from_text_and_spans(
1115
+ text,
1116
+ pattern=pattern,
1117
+ image_size=image_size,
1118
+ allow_empty_phrase=True,
1119
+ )
1120
+ parsed_dict['polygons'] = instances
1121
+ elif task == 'bboxes':
1122
+ instances = self.parse_description_with_bboxes_from_text_and_spans(
1123
+ text,
1124
+ pattern=pattern,
1125
+ image_size=image_size,
1126
+ allow_empty_phrase=True,
1127
+ )
1128
+ parsed_dict['bboxes'] = instances
1129
+ elif task == 'description_with_bboxes_or_polygons':
1130
+ if '<poly>' in text:
1131
+ # only support either polygons or bboxes, not both at the same time
1132
+ instances = self.parse_description_with_polygons_from_text_and_spans(
1133
+ text,
1134
+ pattern=pattern,
1135
+ image_size=image_size,
1136
+ )
1137
+ else:
1138
+ instances = self.parse_description_with_bboxes_from_text_and_spans(
1139
+ text,
1140
+ pattern=pattern,
1141
+ image_size=image_size,
1142
+ )
1143
+ parsed_dict['description_with_bboxes_or_polygons'] = instances
1144
+ else:
1145
+ raise ValueError("task {} is not supported".format(task))
1146
+
1147
+ return parsed_dict
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b7d99c2ca930af3bcc4625df55c82b6bb372456280310b5189c519d6083a270
3
+ size 1555689792
sample_inference.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "model_max_length": 1024
3
+ }
4
+
vocab.json ADDED
The diff for this file is too large to render. See raw diff