NVLM-D-72B-nf4 / configuration_nvlm_d.py
SeanScripts's picture
Upload 12 files
e35a071 verified
# --------------------------------------------------------
# Adapted from https://huggingface.co./OpenGVLab/InternVL2-Llama3-76B under MIT License
# LICENSE is in incl_licenses directory.
# --------------------------------------------------------
import copy
from transformers import AutoConfig, Qwen2Config
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from .configuration_intern_vit import InternVisionConfig
logger = logging.get_logger(__name__)
class NVLM_D_Config(PretrainedConfig):
model_type = 'NVLM_D'
is_composition = True
def __init__(
self,
vision_config=None,
llm_config=None,
use_backbone_lora=0,
use_llm_lora=0,
select_layer=-1,
force_image_size=None,
downsample_ratio=0.5,
template=None,
dynamic_image_size=False,
use_thumbnail=False,
ps_version='v1',
min_dynamic_patch=1,
max_dynamic_patch=6,
**kwargs
):
super().__init__(**kwargs)
# Handle vision_config initialization
if vision_config is None:
vision_config = {}
logger.info('vision_config is None. Initializing InternVisionConfig with default values.')
# Handle llm_config initialization
if llm_config is None:
llm_config = {}
logger.info('llm_config is None. Initializing LLM Config with default values.')
self.vision_config = InternVisionConfig(**vision_config)
# Check for supported architecture
if llm_config.get('architectures', [None])[0] == 'Qwen2ForCausalLM':
self.llm_config = Qwen2Config(**llm_config)
else:
raise ValueError(f"Unsupported architecture: {llm_config.get('architectures', [None])[0]}")
# Assign configuration values
self.use_backbone_lora = use_backbone_lora
self.use_llm_lora = use_llm_lora
self.select_layer = select_layer
self.force_image_size = force_image_size
self.downsample_ratio = downsample_ratio
self.template = template
self.dynamic_image_size = dynamic_image_size
self.use_thumbnail = use_thumbnail
self.ps_version = ps_version # Pixel shuffle version
self.min_dynamic_patch = min_dynamic_patch
self.max_dynamic_patch = max_dynamic_patch
# Log important parameters
logger.info(f'vision_select_layer: {self.select_layer}')
logger.info(f'ps_version: {self.ps_version}')
logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Overrides the default `PretrainedConfig.to_dict`.
Returns:
Dict[str, Any]: Dictionary of all the attributes that make up this configuration instance.
"""
output = copy.deepcopy(self.__dict__)
output['vision_config'] = self.vision_config.to_dict()
output['llm_config'] = self.llm_config.to_dict()
output['model_type'] = self.model_type
output['use_backbone_lora'] = self.use_backbone_lora
output['use_llm_lora'] = self.use_llm_lora
output['select_layer'] = self.select_layer
output['force_image_size'] = self.force_image_size
output['downsample_ratio'] = self.downsample_ratio
output['template'] = self.template
output['dynamic_image_size'] = self.dynamic_image_size
output['use_thumbnail'] = self.use_thumbnail
output['ps_version'] = self.ps_version
output['min_dynamic_patch'] = self.min_dynamic_patch
output['max_dynamic_patch'] = self.max_dynamic_patch
return output