zhiqings commited on
Commit
1b57fb3
1 Parent(s): f753300

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -0
README.md ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Usage:
2
+
3
+ ```python
4
+ import torch
5
+ from transformers import AutoTokenizer, AutoModelForCausalLM
6
+
7
+ question_template = "# Question\n\n{question}\n\n# Solution\n\n"
8
+
9
+ model_name = "ScalableMath/llemma-7b-sft-metamath-level-1to3-hf"
10
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
11
+
12
+ tokenizer = AutoTokenizer.from_pretrained("EleutherAI/llemma_7b")
13
+
14
+ question = "Convert the point $(0,3)$ in rectangular coordinates to polar coordinates. Enter your answer in the form $(r,\\theta),$ where $r > 0$ and $0 \\le \\theta < 2 \\pi.$"
15
+ question = question_template.format(question=question)
16
+
17
+ input_tensor = torch.tensor([tokenizer.encode(question)])
18
+ outputs = model.generate(input_tensor.to(model.device), max_new_tokens=500)
19
+
20
+ result = tokenizer.decode(outputs[0], skip_special_tokens=True)
21
+ print(result)
22
+ ```
23
+
24
+ Example result:
25
+
26
+ ```
27
+ # Question
28
+ Convert the point $(0,3)$ in rectangular coordinates to polar coordinates. Enter your answer in the form $(r,\theta),$ where $r > 0$ and $0 \le \theta < 2 \pi.$
29
+
30
+ # Solution
31
+ To convert from rectangular coordinates to polar coordinates, we use the formulas $r = \sqrt{x^2 + y^2}$ and $\theta = \arctan\left(\frac{y}{x}\right)$.
32
+
33
+ In this case, $x = 0$ and $y = 3$, so $r = \sqrt{0^2 + 3^2} = 3$ and $\theta = \arctan\left(\frac{3}{0}\right)$.
34
+
35
+ Since $\frac{3}{0}$ is undefined, we can say that $\theta$ is undefined.
36
+ However, we know that $\theta$ is an angle, and since $r > 0$, we can say that $\theta$ is any angle that satisfies $0 \le \theta < 2 \pi$.
37
+
38
+ Therefore, the polar coordinates of the point $(0,3)$ are $\boxed{(3,\theta)}$, where $0 \le \theta < 2 \pi$.
39
+
40
+ # Answer
41
+
42
+ (3,\theta)
43
+ ```