update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: BERT_ep9_lr3
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# BERT_ep9_lr3
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT](https://huggingface.co/ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0904
|
23 |
+
- Precision: 0.7736
|
24 |
+
- Recall: 0.8277
|
25 |
+
- F1: 0.7997
|
26 |
+
- Accuracy: 0.9699
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 5e-07
|
46 |
+
- train_batch_size: 8
|
47 |
+
- eval_batch_size: 8
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 9
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.0 | 467 | 0.1271 | 0.6992 | 0.7545 | 0.7258 | 0.9582 |
|
58 |
+
| 0.1807 | 2.0 | 934 | 0.1061 | 0.7236 | 0.7831 | 0.7521 | 0.9638 |
|
59 |
+
| 0.126 | 3.0 | 1401 | 0.0988 | 0.7443 | 0.8029 | 0.7725 | 0.9663 |
|
60 |
+
| 0.113 | 4.0 | 1868 | 0.0954 | 0.7534 | 0.8183 | 0.7845 | 0.9677 |
|
61 |
+
| 0.1072 | 5.0 | 2335 | 0.0927 | 0.7634 | 0.8164 | 0.7890 | 0.9688 |
|
62 |
+
| 0.1014 | 6.0 | 2802 | 0.0918 | 0.7700 | 0.8255 | 0.7968 | 0.9694 |
|
63 |
+
| 0.0982 | 7.0 | 3269 | 0.0910 | 0.7726 | 0.8277 | 0.7992 | 0.9696 |
|
64 |
+
| 0.0977 | 8.0 | 3736 | 0.0905 | 0.7739 | 0.8282 | 0.8002 | 0.9698 |
|
65 |
+
| 0.0938 | 9.0 | 4203 | 0.0904 | 0.7736 | 0.8277 | 0.7997 | 0.9699 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.27.4
|
71 |
+
- Pytorch 2.0.0+cu118
|
72 |
+
- Datasets 2.11.0
|
73 |
+
- Tokenizers 0.13.3
|