File size: 1,728 Bytes
17ea2bb
 
b7326f3
17ea2bb
 
 
 
 
c3367fb
17ea2bb
21257aa
 
17ea2bb
 
 
 
 
c3367fb
17ea2bb
f51697e
17ea2bb
b7326f3
 
 
 
 
17ea2bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7326f3
 
 
17ea2bb
 
 
 
 
 
 
21257aa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
base_model: google/flan-t5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: GK_10000
  results: []
datasets:
- MuskumPillerum/General-Knowledge
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# GK_10000

This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co./google/flan-t5-base) on the MuskumPillerum/General-Knowledge dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6340
- Rouge1: 0.4195
- Rouge2: 0.3016
- Rougel: 0.3924
- Rougelsum: 0.3995

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 2.1243        | 1.0   | 875  | 1.7023          | 0.4106 | 0.2880 | 0.3827 | 0.3899    |
| 1.6975        | 2.0   | 1750 | 1.6422          | 0.4231 | 0.3026 | 0.3957 | 0.4025    |
| 1.495         | 3.0   | 2625 | 1.6340          | 0.4195 | 0.3016 | 0.3924 | 0.3995    |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1