File size: 14,264 Bytes
16e12ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: t5-small-entailement-Writer-T5-base
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-entailement-Writer-T5-base

This model is a fine-tuned version of [t5-small](https://huggingface.co./t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5697

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 250
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| No log        | 1.0   | 42    | 1.8185          |
| No log        | 2.0   | 84    | 1.1957          |
| No log        | 3.0   | 126   | 0.9771          |
| No log        | 4.0   | 168   | 0.8964          |
| No log        | 5.0   | 210   | 0.8380          |
| No log        | 6.0   | 252   | 0.8109          |
| No log        | 7.0   | 294   | 0.7886          |
| No log        | 8.0   | 336   | 0.7760          |
| No log        | 9.0   | 378   | 0.7577          |
| No log        | 10.0  | 420   | 0.7483          |
| No log        | 11.0  | 462   | 0.7364          |
| 1.2044        | 12.0  | 504   | 0.7267          |
| 1.2044        | 13.0  | 546   | 0.7205          |
| 1.2044        | 14.0  | 588   | 0.7102          |
| 1.2044        | 15.0  | 630   | 0.7048          |
| 1.2044        | 16.0  | 672   | 0.7015          |
| 1.2044        | 17.0  | 714   | 0.6958          |
| 1.2044        | 18.0  | 756   | 0.6892          |
| 1.2044        | 19.0  | 798   | 0.6877          |
| 1.2044        | 20.0  | 840   | 0.6825          |
| 1.2044        | 21.0  | 882   | 0.6790          |
| 1.2044        | 22.0  | 924   | 0.6732          |
| 1.2044        | 23.0  | 966   | 0.6676          |
| 0.736         | 24.0  | 1008  | 0.6640          |
| 0.736         | 25.0  | 1050  | 0.6631          |
| 0.736         | 26.0  | 1092  | 0.6617          |
| 0.736         | 27.0  | 1134  | 0.6556          |
| 0.736         | 28.0  | 1176  | 0.6551          |
| 0.736         | 29.0  | 1218  | 0.6545          |
| 0.736         | 30.0  | 1260  | 0.6483          |
| 0.736         | 31.0  | 1302  | 0.6493          |
| 0.736         | 32.0  | 1344  | 0.6488          |
| 0.736         | 33.0  | 1386  | 0.6434          |
| 0.736         | 34.0  | 1428  | 0.6427          |
| 0.736         | 35.0  | 1470  | 0.6403          |
| 0.6568        | 36.0  | 1512  | 0.6364          |
| 0.6568        | 37.0  | 1554  | 0.6342          |
| 0.6568        | 38.0  | 1596  | 0.6325          |
| 0.6568        | 39.0  | 1638  | 0.6300          |
| 0.6568        | 40.0  | 1680  | 0.6302          |
| 0.6568        | 41.0  | 1722  | 0.6292          |
| 0.6568        | 42.0  | 1764  | 0.6264          |
| 0.6568        | 43.0  | 1806  | 0.6272          |
| 0.6568        | 44.0  | 1848  | 0.6252          |
| 0.6568        | 45.0  | 1890  | 0.6229          |
| 0.6568        | 46.0  | 1932  | 0.6221          |
| 0.6568        | 47.0  | 1974  | 0.6202          |
| 0.602         | 48.0  | 2016  | 0.6193          |
| 0.602         | 49.0  | 2058  | 0.6196          |
| 0.602         | 50.0  | 2100  | 0.6174          |
| 0.602         | 51.0  | 2142  | 0.6175          |
| 0.602         | 52.0  | 2184  | 0.6162          |
| 0.602         | 53.0  | 2226  | 0.6155          |
| 0.602         | 54.0  | 2268  | 0.6129          |
| 0.602         | 55.0  | 2310  | 0.6139          |
| 0.602         | 56.0  | 2352  | 0.6124          |
| 0.602         | 57.0  | 2394  | 0.6128          |
| 0.602         | 58.0  | 2436  | 0.6109          |
| 0.602         | 59.0  | 2478  | 0.6111          |
| 0.5653        | 60.0  | 2520  | 0.6097          |
| 0.5653        | 61.0  | 2562  | 0.6086          |
| 0.5653        | 62.0  | 2604  | 0.6083          |
| 0.5653        | 63.0  | 2646  | 0.6086          |
| 0.5653        | 64.0  | 2688  | 0.6090          |
| 0.5653        | 65.0  | 2730  | 0.6074          |
| 0.5653        | 66.0  | 2772  | 0.6064          |
| 0.5653        | 67.0  | 2814  | 0.6056          |
| 0.5653        | 68.0  | 2856  | 0.6039          |
| 0.5653        | 69.0  | 2898  | 0.6051          |
| 0.5653        | 70.0  | 2940  | 0.6043          |
| 0.5653        | 71.0  | 2982  | 0.6034          |
| 0.5368        | 72.0  | 3024  | 0.6020          |
| 0.5368        | 73.0  | 3066  | 0.6047          |
| 0.5368        | 74.0  | 3108  | 0.6031          |
| 0.5368        | 75.0  | 3150  | 0.6011          |
| 0.5368        | 76.0  | 3192  | 0.6027          |
| 0.5368        | 77.0  | 3234  | 0.6009          |
| 0.5368        | 78.0  | 3276  | 0.6003          |
| 0.5368        | 79.0  | 3318  | 0.6001          |
| 0.5368        | 80.0  | 3360  | 0.6008          |
| 0.5368        | 81.0  | 3402  | 0.6005          |
| 0.5368        | 82.0  | 3444  | 0.6007          |
| 0.5368        | 83.0  | 3486  | 0.5988          |
| 0.5055        | 84.0  | 3528  | 0.5991          |
| 0.5055        | 85.0  | 3570  | 0.6004          |
| 0.5055        | 86.0  | 3612  | 0.5989          |
| 0.5055        | 87.0  | 3654  | 0.5975          |
| 0.5055        | 88.0  | 3696  | 0.5977          |
| 0.5055        | 89.0  | 3738  | 0.5982          |
| 0.5055        | 90.0  | 3780  | 0.5964          |
| 0.5055        | 91.0  | 3822  | 0.5979          |
| 0.5055        | 92.0  | 3864  | 0.5996          |
| 0.5055        | 93.0  | 3906  | 0.5936          |
| 0.5055        | 94.0  | 3948  | 0.5956          |
| 0.5055        | 95.0  | 3990  | 0.5940          |
| 0.4866        | 96.0  | 4032  | 0.5961          |
| 0.4866        | 97.0  | 4074  | 0.5955          |
| 0.4866        | 98.0  | 4116  | 0.5949          |
| 0.4866        | 99.0  | 4158  | 0.5971          |
| 0.4866        | 100.0 | 4200  | 0.5958          |
| 0.4866        | 101.0 | 4242  | 0.5978          |
| 0.4866        | 102.0 | 4284  | 0.5971          |
| 0.4866        | 103.0 | 4326  | 0.5954          |
| 0.4866        | 104.0 | 4368  | 0.5933          |
| 0.4866        | 105.0 | 4410  | 0.5944          |
| 0.4866        | 106.0 | 4452  | 0.5952          |
| 0.4866        | 107.0 | 4494  | 0.5948          |
| 0.4657        | 108.0 | 4536  | 0.5951          |
| 0.4657        | 109.0 | 4578  | 0.5948          |
| 0.4657        | 110.0 | 4620  | 0.5948          |
| 0.4657        | 111.0 | 4662  | 0.5927          |
| 0.4657        | 112.0 | 4704  | 0.5931          |
| 0.4657        | 113.0 | 4746  | 0.5919          |
| 0.4657        | 114.0 | 4788  | 0.5939          |
| 0.4657        | 115.0 | 4830  | 0.5922          |
| 0.4657        | 116.0 | 4872  | 0.5921          |
| 0.4657        | 117.0 | 4914  | 0.5917          |
| 0.4657        | 118.0 | 4956  | 0.5913          |
| 0.4657        | 119.0 | 4998  | 0.5908          |
| 0.4468        | 120.0 | 5040  | 0.5929          |
| 0.4468        | 121.0 | 5082  | 0.5915          |
| 0.4468        | 122.0 | 5124  | 0.5926          |
| 0.4468        | 123.0 | 5166  | 0.5929          |
| 0.4468        | 124.0 | 5208  | 0.5911          |
| 0.4468        | 125.0 | 5250  | 0.5907          |
| 0.4468        | 126.0 | 5292  | 0.5921          |
| 0.4468        | 127.0 | 5334  | 0.5917          |
| 0.4468        | 128.0 | 5376  | 0.5923          |
| 0.4468        | 129.0 | 5418  | 0.5912          |
| 0.4468        | 130.0 | 5460  | 0.5930          |
| 0.4346        | 131.0 | 5502  | 0.5924          |
| 0.4346        | 132.0 | 5544  | 0.5933          |
| 0.4346        | 133.0 | 5586  | 0.5920          |
| 0.4346        | 134.0 | 5628  | 0.5937          |
| 0.4346        | 135.0 | 5670  | 0.5930          |
| 0.4346        | 136.0 | 5712  | 0.5930          |
| 0.4346        | 137.0 | 5754  | 0.5929          |
| 0.4346        | 138.0 | 5796  | 0.5916          |
| 0.4346        | 139.0 | 5838  | 0.5935          |
| 0.4346        | 140.0 | 5880  | 0.5947          |
| 0.4346        | 141.0 | 5922  | 0.5926          |
| 0.4346        | 142.0 | 5964  | 0.5930          |
| 0.4247        | 143.0 | 6006  | 0.5911          |
| 0.4247        | 144.0 | 6048  | 0.5916          |
| 0.4247        | 145.0 | 6090  | 0.5929          |
| 0.4247        | 146.0 | 6132  | 0.5926          |
| 0.4247        | 147.0 | 6174  | 0.5917          |
| 0.4247        | 148.0 | 6216  | 0.5913          |
| 0.4247        | 149.0 | 6258  | 0.5907          |
| 0.4247        | 150.0 | 6300  | 0.5930          |
| 0.4247        | 151.0 | 6342  | 0.5928          |
| 0.4247        | 152.0 | 6384  | 0.5922          |
| 0.4247        | 153.0 | 6426  | 0.5921          |
| 0.4247        | 154.0 | 6468  | 0.5925          |
| 0.4139        | 155.0 | 6510  | 0.5923          |
| 0.4139        | 156.0 | 6552  | 0.5919          |
| 0.4139        | 157.0 | 6594  | 0.5920          |
| 0.4139        | 158.0 | 6636  | 0.5935          |
| 0.4139        | 159.0 | 6678  | 0.5926          |
| 0.4139        | 160.0 | 6720  | 0.5926          |
| 0.4139        | 161.0 | 6762  | 0.5925          |
| 0.4139        | 162.0 | 6804  | 0.5927          |
| 0.4139        | 163.0 | 6846  | 0.5918          |
| 0.4139        | 164.0 | 6888  | 0.5925          |
| 0.4139        | 165.0 | 6930  | 0.5935          |
| 0.4139        | 166.0 | 6972  | 0.5926          |
| 0.4049        | 167.0 | 7014  | 0.5919          |
| 0.4049        | 168.0 | 7056  | 0.5917          |
| 0.4049        | 169.0 | 7098  | 0.5916          |
| 0.4049        | 170.0 | 7140  | 0.5925          |
| 0.4049        | 171.0 | 7182  | 0.5931          |
| 0.4049        | 172.0 | 7224  | 0.5938          |
| 0.4049        | 173.0 | 7266  | 0.5932          |
| 0.4049        | 174.0 | 7308  | 0.5927          |
| 0.4049        | 175.0 | 7350  | 0.5934          |
| 0.4049        | 176.0 | 7392  | 0.5931          |
| 0.4049        | 177.0 | 7434  | 0.5937          |
| 0.4049        | 178.0 | 7476  | 0.5939          |
| 0.397         | 179.0 | 7518  | 0.5939          |
| 0.397         | 180.0 | 7560  | 0.5932          |
| 0.397         | 181.0 | 7602  | 0.5935          |
| 0.397         | 182.0 | 7644  | 0.5939          |
| 0.397         | 183.0 | 7686  | 0.5935          |
| 0.397         | 184.0 | 7728  | 0.5945          |
| 0.397         | 185.0 | 7770  | 0.5932          |
| 0.397         | 186.0 | 7812  | 0.5931          |
| 0.397         | 187.0 | 7854  | 0.5925          |
| 0.397         | 188.0 | 7896  | 0.5934          |
| 0.397         | 189.0 | 7938  | 0.5941          |
| 0.397         | 190.0 | 7980  | 0.5939          |
| 0.3891        | 191.0 | 8022  | 0.5933          |
| 0.3891        | 192.0 | 8064  | 0.5934          |
| 0.3891        | 193.0 | 8106  | 0.5938          |
| 0.3891        | 194.0 | 8148  | 0.5944          |
| 0.3891        | 195.0 | 8190  | 0.5937          |
| 0.3891        | 196.0 | 8232  | 0.5939          |
| 0.3891        | 197.0 | 8274  | 0.5937          |
| 0.3891        | 198.0 | 8316  | 0.5947          |
| 0.3891        | 199.0 | 8358  | 0.5945          |
| 0.3891        | 200.0 | 8400  | 0.5946          |
| 0.3891        | 201.0 | 8442  | 0.5945          |
| 0.3891        | 202.0 | 8484  | 0.5938          |
| 0.3842        | 203.0 | 8526  | 0.5947          |
| 0.3842        | 204.0 | 8568  | 0.5945          |
| 0.3842        | 205.0 | 8610  | 0.5935          |
| 0.3842        | 206.0 | 8652  | 0.5935          |
| 0.3842        | 207.0 | 8694  | 0.5939          |
| 0.3842        | 208.0 | 8736  | 0.5938          |
| 0.3842        | 209.0 | 8778  | 0.5939          |
| 0.3842        | 210.0 | 8820  | 0.5940          |
| 0.3842        | 211.0 | 8862  | 0.5943          |
| 0.3842        | 212.0 | 8904  | 0.5943          |
| 0.3842        | 213.0 | 8946  | 0.5946          |
| 0.3842        | 214.0 | 8988  | 0.5946          |
| 0.3802        | 215.0 | 9030  | 0.5947          |
| 0.3802        | 216.0 | 9072  | 0.5949          |
| 0.3802        | 217.0 | 9114  | 0.5944          |
| 0.3802        | 218.0 | 9156  | 0.5946          |
| 0.3802        | 219.0 | 9198  | 0.5950          |
| 0.3802        | 220.0 | 9240  | 0.5950          |
| 0.3802        | 221.0 | 9282  | 0.5953          |
| 0.3802        | 222.0 | 9324  | 0.5951          |
| 0.3802        | 223.0 | 9366  | 0.5956          |
| 0.3802        | 224.0 | 9408  | 0.5952          |
| 0.3802        | 225.0 | 9450  | 0.5955          |
| 0.3802        | 226.0 | 9492  | 0.5958          |
| 0.3791        | 227.0 | 9534  | 0.5954          |
| 0.3791        | 228.0 | 9576  | 0.5953          |
| 0.3791        | 229.0 | 9618  | 0.5959          |
| 0.3791        | 230.0 | 9660  | 0.5959          |
| 0.3791        | 231.0 | 9702  | 0.5957          |
| 0.3791        | 232.0 | 9744  | 0.5957          |
| 0.3791        | 233.0 | 9786  | 0.5956          |
| 0.3791        | 234.0 | 9828  | 0.5956          |
| 0.3791        | 235.0 | 9870  | 0.5956          |
| 0.3791        | 236.0 | 9912  | 0.5956          |
| 0.3791        | 237.0 | 9954  | 0.5957          |
| 0.3791        | 238.0 | 9996  | 0.5960          |
| 0.3764        | 239.0 | 10038 | 0.5956          |
| 0.3764        | 240.0 | 10080 | 0.5956          |
| 0.3764        | 241.0 | 10122 | 0.5955          |
| 0.3764        | 242.0 | 10164 | 0.5956          |
| 0.3764        | 243.0 | 10206 | 0.5955          |
| 0.3764        | 244.0 | 10248 | 0.5957          |
| 0.3764        | 245.0 | 10290 | 0.5956          |
| 0.3764        | 246.0 | 10332 | 0.5955          |
| 0.3764        | 247.0 | 10374 | 0.5954          |
| 0.3764        | 248.0 | 10416 | 0.5955          |
| 0.3764        | 249.0 | 10458 | 0.5954          |
| 0.3763        | 250.0 | 10500 | 0.5954          |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2