--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer base_model: openai/whisper-large-v2 model-index: - name: whisper-large-v2-spanish results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: es split: test args: es metrics: - type: wer value: 0.09930265529872913 name: Wer --- # whisper-large-v2-spanish This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co./openai/whisper-large-v2) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2414 - Wer Ortho: 0.1439 - Wer: 0.0993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.2074 | 1.0 | 1752 | 0.2511 | 0.1628 | 0.1211 | | 0.1323 | 2.0 | 3504 | 0.2414 | 0.1439 | 0.0993 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3