File size: 2,013 Bytes
8c791ca
 
 
 
 
 
 
 
3114f9b
8c791ca
 
 
 
 
 
 
 
 
 
 
 
39db85a
 
8c791ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39db85a
8c791ca
 
 
 
 
 
39db85a
8c791ca
 
 
 
 
39db85a
 
 
 
 
 
 
 
 
 
8c791ca
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
base_model: ntu-spml/distilhubert
model-index:
- name: distilhubert-finetuned-gtzan
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilhubert-finetuned-gtzan

This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co./ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5358
- Accuracy: 0.88

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.8758        | 1.0   | 57   | 1.7723          | 0.51     |
| 1.2291        | 2.0   | 114  | 1.1713          | 0.69     |
| 0.8029        | 3.0   | 171  | 0.8953          | 0.75     |
| 0.7314        | 4.0   | 228  | 0.8242          | 0.73     |
| 0.3424        | 5.0   | 285  | 0.6117          | 0.82     |
| 0.229         | 6.0   | 342  | 0.5272          | 0.82     |
| 0.1571        | 7.0   | 399  | 0.5470          | 0.87     |
| 0.0777        | 8.0   | 456  | 0.5393          | 0.88     |
| 0.0539        | 9.0   | 513  | 0.5087          | 0.88     |
| 0.0688        | 10.0  | 570  | 0.5358          | 0.88     |


### Framework versions

- Transformers 4.30.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3