File size: 2,013 Bytes
8c791ca 3114f9b 8c791ca 39db85a 8c791ca 39db85a 8c791ca 39db85a 8c791ca 39db85a 8c791ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
base_model: ntu-spml/distilhubert
model-index:
- name: distilhubert-finetuned-gtzan
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co./ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5358
- Accuracy: 0.88
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.8758 | 1.0 | 57 | 1.7723 | 0.51 |
| 1.2291 | 2.0 | 114 | 1.1713 | 0.69 |
| 0.8029 | 3.0 | 171 | 0.8953 | 0.75 |
| 0.7314 | 4.0 | 228 | 0.8242 | 0.73 |
| 0.3424 | 5.0 | 285 | 0.6117 | 0.82 |
| 0.229 | 6.0 | 342 | 0.5272 | 0.82 |
| 0.1571 | 7.0 | 399 | 0.5470 | 0.87 |
| 0.0777 | 8.0 | 456 | 0.5393 | 0.88 |
| 0.0539 | 9.0 | 513 | 0.5087 | 0.88 |
| 0.0688 | 10.0 | 570 | 0.5358 | 0.88 |
### Framework versions
- Transformers 4.30.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
|