File size: 49,915 Bytes
75a1f07
 
506bc27
 
 
75a1f07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
506bc27
 
75a1f07
506bc27
 
 
 
75a1f07
506bc27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75a1f07
506bc27
 
 
 
75a1f07
506bc27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75a1f07
506bc27
 
 
75a1f07
506bc27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75a1f07
506bc27
 
 
 
 
 
 
75a1f07
506bc27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75a1f07
506bc27
 
 
 
 
 
 
75a1f07
506bc27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75a1f07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b2704e
75a1f07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0899c42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75a1f07
 
 
0899c42
 
 
75a1f07
 
 
0899c42
 
75a1f07
 
0899c42
 
75a1f07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
426f593
 
 
 
 
 
 
 
 
75a1f07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
426f593
 
 
75a1f07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
426f593
 
75a1f07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
---
base_model: intfloat/multilingual-e5-large-instruct
license: cc-by-4.0
language:
- de
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:51106
- loss:AnglELoss
widget:
- source_sentence: >-
    Instruct: Retrieve semantically similar text.

    Query: Medwedew über die Entsendung von NATO-Truppen in die Ukraine: „Die
    Entsendung von NATO-Truppen auf das Territorium der Ukraine wird den
    direkten Eintritt dieser Länder in den Krieg bedeuten, worauf wir (Russland)
    mit (...) reagieren müssen. Es wird eine Weltkatastrophe werden.“
  sentences:
  - >-
    Dipl.-Pol. Udo Walendy (1927-2022) spricht klare Worte über die
    machtpolitischen Hintergründe der gegen Deutschland gerichteten
    Greuelpropaganda und Geschichtsfälschung... Anmerkung: In dem konkreten Fall
    verbreitete Kohl (alias Henoch Kohn) die Mär vom Zigeuner-Massenmord.
    Während Walendy noch ungestraft nachfragen konnte, woher denn die
    angeblichen Opferzahlen stammten, hat man ja bspw. Ursula Haverbeck direkt
    vor Gericht gezerrt... Der Unterschied war bloß: Es waren ein paar
    Jahrzehnte dazwischen. Die Geschichtslügen wurden ja zwischenzeitlich
    strafrechtlich abgesichert und quasi manifestiert. (§130) Beachtenswert ist
    natürlich der Umstand, daß vermeintlich "deutsche" Politiker von Brandt bis
    Scholz diese (Sieger-Propaganda-) Lügen gebetsmühlenartig wiederholen...
    EIGENE Politiker?!... MITNICHTEN!
  - >-
    Der Pharmamafia !!! Um Umsatz und Gewinne für die Zunkunft nicht nur zu
    sichern, sondern exorbitant zu steigern, gilt es alle gesunden Kinder
    weltweit, direkt nach der Geburt krank zu spritzen. ‼ HIER WIR IMPFEN NICHT
    ! Dokumentarfilm ‼ Denn Impfen wirkt, nur halt anders als behauptet. Ganz
    wichtig ist dabei ist es nach Möglichkeit die Spritzen zur allgemeinen
    Pflicht zu erklären, denn nur so können die verhindern, daß dieses
    abschäuliche Treiben, wegen einer ungeimpften Kontrollgruppe,
    augenscheinlich ist. <URL> <URL>
  - >-
    UPDATE Nach Angaben des Militärministeriums werden Einheiten des südlichen
    Militärbezirks, der Luftstreitkräfte und der Marine an den Übungen
    teilnehmen. Der Zweck der Übungen wird als Reaktion auf Provokationen und
    Bedrohungen durch westliche Länder bezeichnet. Das bedeutet, dass der
    südliche Militärbezirk, der ziemlich direkt an der Spezialoperation
    beteiligt ist, umfassende Übungen zum Einsatz taktischer Atomwaffen als
    Reaktion auf bestimmte Pläne westlicher Länder durchführen wird. Damit sind
    natürlich die kürzlich geäußerten Überlegungen zur Entsendung von
    NATO-Truppen in die Ukraine gemeint. Diese Aussage ist eine ernstzunehmende
    Steigerung sowohl dessen, was offiziell rhetorisch akzeptabel ist, als auch
    dessen, was bei den Übungen demonstriert wird. Ebenso wie das, was während
    dieser Übungen praktiziert wird. Quelle: 136 BRIGADE Abonniere: Übersicht
    Ukraine ©Ansichten der Kanalbetreiber
- source_sentence: >-
    Instruct: Retrieve semantically similar text.

    Query: Die 1,5h Rede (statt 15min) von Muammar Al Gaddafi bei der
    vollbesetzten Generalversammlung der UNO 23.09.2009 - Deutsch Diese
    hochbrisante Rede war Gaddafis Todesurteil. 01:18:00 - 01:20:11 interessant!
    Gaddafis gelöschte Reden <URL> t.me/swd_hardcore
  sentences:
  - >-
    "Lasst uns die aufgeflogenen frechen Mörder ans Licht reißen und deren
    Schandtaten ins Bewusstsein der Völker einhämmern. So lange, bis entweder
    die Justiz sie ahndet – und zwar bis zur obersten Etage – oder bis sich
    Millionen ehrwürdige Volksgenossen versammeln, um Tribunale auszurufen, die
    dann legal, in echt abrechnen mit diesen Schwerstverbrechern." Laden Sie
    diese Videos auf Ihre Social-Media-Kanäle wie TikTok, Facebook, YouTube, VK,
    Odysee, Telegram ... Video in voller Länge: <URL> - Folge uns auf Telegram!
  - >-
    Профессор Соловей заявил, что Джо Байден умер и был заменен двойником,
    контролируемым руководством Секретной службы США. На это указывает ряд
    внешних признаков. Тело настоящего президента США помещено в холодильник
    бункера под Белым домом до президентских выборов.
  - >-
    Foreign Minister Sergey Lavrov and Foreign Minister of Tajikistan Sirojiddin
    Muhriddin hold talks on the sidelines of the Third Antalya Diplomacy Forum
    Antalya, March 2, 2024
- source_sentence: >-
    Instruct: Retrieve semantically similar text.

    Query: Und so ist es auch heute noch! Im großen wie im kleinen. Das was man
    selber macht, wird der Gegenseite angelastet und zugeschrieben. Danke an die
    wunderbare Seele für diese ans Licht bringenden Worte
  sentences:
  - >-
    Die NATO sind Faschisten In Belgrad findet am 25. Jahrestag des Beginns der
    Bombardierung Jugoslawiens eine Aktion statt, deren Teilnehmer ein Ende der
    Zusammenarbeit mit dem Nordatlantischen Bündnis fordern. Während des
    Marsches skandieren sie: „Die NATO sind Faschisten.“ Russländer & Friends
  - >-
    Übersterblichkeit in Deutschland. Eine der schlimmsten Konsequenzen der
    Verbrechen der letzten Jahre. Wer angesichts solcher Katastrophen – ohne
    dass überhaupt irgendeine juristische Aufarbeitung stattgefunden hat – von
    „Versöhnung“ mit den Täterkreisen spricht, der sollte besser nie mehr
    öffentlich das Wort ergreifen. Diese Täterkreise sind bis heute dafür
    verantwortlich, dass die Existenz von Kritikern der Verbrechen der letzten
    Jahre bis auf den heutigen Tag zerstört wird. Der Bevölkerung wird der
    Zugang zum Recht verweigert, womit diese Täterkreise geschützt werden. Aber
    jetzt soll mit diesen Täterkreisen wegen einem Datenleak die „Versöhnung“
    gesucht werden? Was wir von solchen Äußerungen halten, mit denen alle Opfer
    förmlich für dumm verkauft werden sollen, das kann kaum noch sachlich
    formuliert werden.
  - >-
    Von ganzem Herzen ein riesen großes Dankeschön. Lasst uns weiterhin
    gemeinsam Aufklären und die Menschen über Hintergründe informieren. Das geht
    aber nur mit euch und eurer Hilfe, Zuversicht und Schöpferkraft. Wahrheit
    macht frei und Freiheit macht wahr <URL> Denk selbst und informiere Dich
- source_sentence: >-
    Instruct: Retrieve semantically similar text.

    Query: Es ist und bleibt eine unfassbare BARBAREI! Aber wo sind auf einmal
    all die Tierliebhaber? Traut sich wieder keiner dazu was zu sagen? Oder ist
    es in diesem Fall akzeptabel? Ist das Blut der geschächteten Tiere „bunt“
    und „weltoffen“ genug? Es widert mich so dermaßen an. Ich gedenke all der
    unschuldigen Wesen, die brutal gefoltert und abgeschlachtet werden. So etwas
    kann und darf niemals zu einer zivilisierten Gesellschaft gehören und dürfte
    nirgendwo auf der Welt akzeptiert werden! Tim K.
  sentences:
  - >-
    EU-Botschafter ignorieren geschlossene eine Gesprächseinladung von Lawrow
    Hier den Artikel lesen Das russische Außenministerium hat die Botschafter
    der EU-Staaten zu einem Gespräch mit Außenminister Lawrow eingeladen, aber
    die EU-Botschafter haben ihre Teilnahme geschlossen abgesagt. Russland
    spricht davon, das werde "schreckliche Konsequenzen" haben. • Thomas Röper
  - >-
    "Schließlich können wir auch gerade jetzt bei den Demonstrationen
    feststellen, dass auch Demokratien manchmal Merkmale des Totalitarismus
    haben können.“ Das ist mal ein interessanter Artikel <URL> Hier findest Du
    wie gewohnt alle Themen rund um die grosse Agenda, m auf dem Laufenden zu
    bleiben: <URL> Und hier findest du alles zum Thema geistige und körperliche
    Gesundheit, und um spirituelles Wachstum‍: <URL> Und ganz neu: !!!! Für
    unsere französischsprachigen Freunde findet Ihr hier unseren französischen
    Gesundheitskanal.‍ Pour nos amis francophones, rendez-vous sur notre chaîne
    santé française ici <URL>
  - >-
    Dem ist nichts hinzuzufügen, außer, dass man den Hannibal für seine
    Verbrechen bestraft hat. Und die anderen zwangsfinanziert werden. Merkste
    was? Wahrheit macht frei und Freiheit macht wahr <URL> Denk selbst und
    informiere Dich
- source_sentence: >-
    Instruct: Retrieve semantically similar text.

    Query: Die Pentagon-Mitarbeiter wechseln zum Überstundenmodus Internetnutzer
    stellten fest, dass es in der Gegend, in der sich die Abteilung befindet,
    einen starken Anstieg der Bestellungen für Pizzalieferungen gab und
    gleichzeitig die örtlichen Bars leer waren. Zuletzt geschah dies im April,
    kurz vor und nach dem iranischen Angriff auf Israel. Dann bemerkte The Sun
    die hohe Auslastung der Pizzerien von Papa Johns mit Bestellungen vom
    Pentagon. Unsere Website <URL> Unser Kanal auf Englisch <URL>
  sentences:
  - >-
    Das hatte ich auch schon mal geschrieben. Ich war zuerst so wütend, dass
    Russland ausgeschlossen wurde. Aber nach der ekelhaften Eröffnung war ich
    dankbar dafür. Dieses kotztheater, was da abgeht, ist diesem stolzen Land
    nicht zumutbar und nicht würdig
  - >-
    Heute sind offensichtlich ältere Flugzeuge am Himmel die entweder Turbinen
    Probleme haben oder schon elektrisch Fliegen... Die ganzen Lügen sind sooo
    offensichtlich das es schon weh tut sie bewusst zu ignorieren bzw nicht zu
    erkennen... Ihr wollt die Wahrheit <URL>
  - >-
    Erinnern Sie sich an meinen Beitrag von vorhin über die massiven
    Cyberausfälle. Verbinden Sie das alles mit dem, was wir seit „Shot Heard
    Round the World“ am Samstag gesagt haben. BQQM BQQM BQQM BQQM 1776 1776
    BRICS
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-large-instruct
  results:
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: FineTuned 8
      type: FineTuned_8
    metrics:
    - type: cosine_accuracy
      value: 0.9758104058839553
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.9067002534866333
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.48869752421959095
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.9034577012062073
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.6735905044510386
      name: Cosine Precision
    - type: cosine_recall
      value: 0.38344594594594594
      name: Cosine Recall
    - type: cosine_ap
      value: 0.5012063718756087
      name: Cosine Ap
    - type: dot_accuracy
      value: 0.9758104058839553
      name: Dot Accuracy
    - type: dot_accuracy_threshold
      value: 0.9067002534866333
      name: Dot Accuracy Threshold
    - type: dot_f1
      value: 0.48869752421959095
      name: Dot F1
    - type: dot_f1_threshold
      value: 0.903457760810852
      name: Dot F1 Threshold
    - type: dot_precision
      value: 0.6735905044510386
      name: Dot Precision
    - type: dot_recall
      value: 0.38344594594594594
      name: Dot Recall
    - type: dot_ap
      value: 0.501205944378431
      name: Dot Ap
    - type: manhattan_accuracy
      value: 0.9749931898665214
      name: Manhattan Accuracy
    - type: manhattan_accuracy_threshold
      value: 11.01162338256836
      name: Manhattan Accuracy Threshold
    - type: manhattan_f1
      value: 0.4920802534318901
      name: Manhattan F1
    - type: manhattan_f1_threshold
      value: 11.218721389770508
      name: Manhattan F1 Threshold
    - type: manhattan_precision
      value: 0.6563380281690141
      name: Manhattan Precision
    - type: manhattan_recall
      value: 0.3935810810810811
      name: Manhattan Recall
    - type: manhattan_ap
      value: 0.49364856616931857
      name: Manhattan Ap
    - type: euclidean_accuracy
      value: 0.9758104058839553
      name: Euclidean Accuracy
    - type: euclidean_accuracy_threshold
      value: 0.4319716691970825
      name: Euclidean Accuracy Threshold
    - type: euclidean_f1
      value: 0.48869752421959095
      name: Euclidean F1
    - type: euclidean_f1_threshold
      value: 0.439413845539093
      name: Euclidean F1 Threshold
    - type: euclidean_precision
      value: 0.6735905044510386
      name: Euclidean Precision
    - type: euclidean_recall
      value: 0.38344594594594594
      name: Euclidean Recall
    - type: euclidean_ap
      value: 0.5012064992979081
      name: Euclidean Ap
    - type: max_accuracy
      value: 0.9758104058839553
      name: Max Accuracy
    - type: max_accuracy_threshold
      value: 11.01162338256836
      name: Max Accuracy Threshold
    - type: max_f1
      value: 0.4920802534318901
      name: Max F1
    - type: max_f1_threshold
      value: 11.218721389770508
      name: Max F1 Threshold
    - type: max_precision
      value: 0.6735905044510386
      name: Max Precision
    - type: max_recall
      value: 0.3935810810810811
      name: Max Recall
    - type: max_ap
      value: 0.5012064992979081
      name: Max Ap
---

# SentenceTransformer based on intfloat/multilingual-e5-large-instruct

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large-instruct](https://huggingface.co./intfloat/multilingual-e5-large-instruct). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for claim matching. Claim matching is the task of finding semantically identical texts for a given query-text. It finds application in the context of automated fact-checking for which it is important to identify copies of the same (misinformation) claim or previously checked claims.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-large-instruct](https://huggingface.co./intfloat/multilingual-e5-large-instruct) <!-- at revision baa7be480a7de1539afce709c8f13f833a510e0a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

def embed_query(texts:list, model):
    return model.encode(sentences=texts, 
                prompt="Instruct: Retrieve semantically similar text.\nQuery: ",
                batch_size=32,
                show_progress_bar=True,
                normalize_embeddings=False,
                convert_to_numpy=True,
                device="cuda")
def embed_documents(texts:list, model):
    return model.encode(sentences=texts, 
                batch_size=1024,
                show_progress_bar=True,
                normalize_embeddings=False,
                convert_to_numpy=True,
                device="cuda")

# Download from the 🤗 Hub
model = SentenceTransformer("Sami92/multiling-e5-large-instruct-claim-matching")
# Run inference

queries = ['Die Pentagon-Mitarbeiter wechseln zum Überstundenmodus Internetnutzer stellten fest, dass es in der Gegend, in der sich die Abteilung befindet, einen starken Anstieg der Bestellungen für Pizzalieferungen gab und gleichzeitig die örtlichen Bars leer waren. Zuletzt geschah dies im April, kurz vor und nach dem iranischen Angriff auf Israel. Dann bemerkte The Sun die hohe Auslastung der Pizzerien von Papa Johns mit Bestellungen vom Pentagon. Unsere Website <URL> Unser Kanal auf Englisch <URL>',]
documents = [
    'Erinnern Sie sich an meinen Beitrag von vorhin über die massiven Cyberausfälle. Verbinden Sie das alles mit dem, was wir seit „Shot Heard Round the World“ am Samstag gesagt haben. BQQM BQQM BQQM BQQM 1776 1776 BRICS',
    'Heute sind offensichtlich ältere Flugzeuge am Himmel die entweder Turbinen Probleme haben oder schon elektrisch Fliegen... Die ganzen Lügen sind sooo offensichtlich das es schon weh tut sie bewusst zu ignorieren bzw nicht zu erkennen... Ihr wollt die Wahrheit <URL>',
]
query_embeddings = embed_documents(texts=queries, model=model)
doc_embeddings = embed_query(texts=documents, model=model)

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, doc_embeddings)

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Binary Classification
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                       | Value      |
|:-----------------------------|:-----------|
| cosine_accuracy              | 0.9758     |
| cosine_accuracy_threshold    | 0.9067     |
| cosine_f1                    | 0.4887     |
| cosine_f1_threshold          | 0.9035     |
| cosine_precision             | 0.6736     |
| cosine_recall                | 0.3834     |
| cosine_ap                    | 0.5012     |
| dot_accuracy                 | 0.9758     |
| dot_accuracy_threshold       | 0.9067     |
| dot_f1                       | 0.4887     |
| dot_f1_threshold             | 0.9035     |
| dot_precision                | 0.6736     |
| dot_recall                   | 0.3834     |
| dot_ap                       | 0.5012     |
| manhattan_accuracy           | 0.975      |
| manhattan_accuracy_threshold | 11.0116    |
| manhattan_f1                 | 0.4921     |
| manhattan_f1_threshold       | 11.2187    |
| manhattan_precision          | 0.6563     |
| manhattan_recall             | 0.3936     |
| manhattan_ap                 | 0.4936     |
| euclidean_accuracy           | 0.9758     |
| euclidean_accuracy_threshold | 0.432      |
| euclidean_f1                 | 0.4887     |
| euclidean_f1_threshold       | 0.4394     |
| euclidean_precision          | 0.6736     |
| euclidean_recall             | 0.3834     |
| euclidean_ap                 | 0.5012     |
| max_accuracy                 | 0.9758     |
| max_accuracy_threshold       | 11.0116    |
| max_f1                       | 0.4921     |
| max_f1_threshold             | 11.2187    |
| max_precision                | 0.6736     |
| max_recall                   | 0.3936     |
| **max_ap**                   | **0.5012** |


The following figure depicts f1, recall, and precision on the test data for different thresholds.
![](./threshold_scores.jpg)


The following figure depicts how well matches and mismatches in the test data are separated by the model. For results with a minimum of false positives, a threshold higher than 0.91 is recommended. For the optimal F1 score, the right treshold is 0.9050.
![](./similarity_histogram.jpg)


<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset
The model was trained on a weakly annotated dataset. The data was taken from Telegram. More specifically from a set of about 200 channels that have been subject to a fact-check from either Correctiv, dpa, Faktenfuchs or AFP.

Weak annotation was performed using GPT-4o. The model was prompted to find semantically identical posts using this [prompt](https://huggingface.co./Sami92/multiling-e5-large-instruct-claim-matching/blob/main/prompt.txt). For non-matches the cosine similarity was reduced by 1.2 for training and for matches it was frozen to 0.98.

#### Unnamed Dataset


* Size: 51,106 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                            | sentence2                                                                           | score                                                           |
  |:--------|:-------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------|
  | type    | string                                                                               | string                                                                              | float                                                           |
  | details | <ul><li>min: 41 tokens</li><li>mean: 154.84 tokens</li><li>max: 322 tokens</li></ul> | <ul><li>min: 32 tokens</li><li>mean: 133.5 tokens</li><li>max: 339 tokens</li></ul> | <ul><li>min: -1.65</li><li>mean: nan</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | score                            |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------|
  | <code>Instruct: Retrieve semantically similar text.<br>Query: AfD-Chefin Weidel verurteilt Verbot von COMPACT-Magazin NICHT (!) Was ist das für eine Stellungnahme? Der Angriff auf COMPACT ist ein Frontalangriff auf die Presse- und Meinungsfreiheit in diesem Land. Und muss entschieden verurteilt werden. Doch ausgerechnet AfD-Frontfrau Alice Weidel kommt mit einer handzahmen Alibi-Erklärung daher, spricht von einem „unguten Zeichen“ und will „kritisch begleiten“. Was es jetzt von der Bundestags-AfD braucht, ist parlamentarischer Druck, z.B. mit einer Sondersitzung des Innenausschusses. Faeser muss sich dafür verantworten, COMPACT verboten zu haben. Und dafür braucht es keine Alibi-Erklärungen, sondern knallharte Offensive. Schließlich plakatiert die AfD - ebenso, wie es der COMPACT-Leitspruch war - "Mut zur Wahrheit." Und nicht "Wir kuschen vor Faeser und Haldenwang". Übrigens: Björn Höcke hat das Verbot mit deutlichen Worten scharf verurteilt und geht zum Gegenangriff über. Dieser Mann hat es verstanden. FREIE SACHSEN: Folgt uns! <URL></code> | <code>Paul Klemm: „COMPACT-Verbot ist Anschlag auf den gesamten Widerstand“ Die Journalisten des Compact Magazins betrachten das Verbot ihrer Zeitschrift nicht nur als Attacke gegen sich selbst. Im Gegenteil: Nancy Faeser ziele mit ihrem Versuch auf die gesamte Systemopposition in Deutschland. Das sagt jedenfalls der bisherige TV-Chef von Compact, Paul Klemm, gegenüber AUF1. Die AUF1-Sondersendung „Tag 2 COMPACT-Verbot: So kann es jeden treffen!“ von gestern sehen Sie hier: <URL></code>                                                                                                                                                                                                                                                                                                                                                                                               | <code>-1.518102343739742</code>  |
  | <code>Instruct: Retrieve semantically similar text.<br>Query: vier Monate vor der allerersten Impfung RKI-Protokoll vom 17. August 2020 - mehr als 4 Monate bevor die erste Impfdosis gespritzt wurde "...wichtiger offener Punkt" RKI-LEAK Pressekonferenz 23.07.2024 🫵 Möge die gesamte Republik mit dem Finger auf Regierungs-Journalisten zeigen! ‼ Karl Lauterbach hat geringes Risiko von Covid absichtlich vor Impfpflicht-Abstimmung nicht kommuniziert Zwei Tage nach erstem Lockdown konnte man Massnahmen schon nicht mehr begründen Komplette Pressekonferenz Österreich: ÖRR berichtet über RKI-Files! "Die Pandemie der Ungeimpften" - Österreich Edition RKI-Files zum Download: Server 1 / Server 2 / Server 3 / Server 4 / Server 5 / Server 6 Danke Bernd Reiser auf telegram auf substack auf youtube auf odyssee auf Twitter .</code>                                                                                                                                                                                                                                         | <code>‼ Corona: Nächste Impf-Lüge von Lauterbach aufgedeckt Gegen den Rat des Robert-Koch-Institutes (RKI) hat Bundesgesundheitsminister Karl Lauterbach (SPD) die Deutschen über die Wirkung der Corona-Impfung in Bezug auf Long Covid belogen. Wie aus den jetzt von der Journalistin Aya Velázquez veröffentlichten E-Mails des RKI hervorgeht, hatte der Experten-Rat keine verläßliche Wirkung der Vakzine gegen Long Covid erkannt. Vielmehr hatte er auf Bitten Lauterbachs, diese These wissenschaftlich zu untermauern, im Juli ausdrücklich davon abgeraten, eine solche Behauptung aufzustellen. Zunächst hieß es noch zurückhaltend, aber eindeutig, »die Evidenzlage ist bislang nicht klar«. Link zum Artikel</code>                                                                                                                                                                       | <code>0.998</code>               |
  | <code>Instruct: Retrieve semantically similar text.<br>Query: "Kommunen und Sozialverbände fordern Hilfen für Hitzeschutz Hitzewellen werden durch den Klimawandel immer wahrscheinlicher. Kommunen müssen sich deshalb besser gegen extreme Temperaturen schützen. Es fehlt aber das Geld dafür." ------- Es fehlt mittlerweile das Geld für Hitzeschutz... Quelle</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <code>Heute in Großweitzschen: Die Zukunft unserer Kinder sollte nicht von einer wirtschaftlichen Entwicklung abhängig sein. Die Gemeindeverwaltung Großweitzschen planen die Kindertagesstätte ,,Wirbelwind"in Westewitz zu schließen. Wir müssen die kleinen Dorf-Kitas erhalten. Daher braucht es mehr Flexibilität im starren Kita-System und Geld vom Land, um die Dorf-Kitas zu erhalten. So entlasten wir unsere Gemeinden und schaffen es, dass junge Familien aufs Land ziehen. Mehr Infos gibt es auch hier: <URL> Kommt alle heute, den 16.07.2024 in den Versammlungsraum Gallschütz Nr. 13! Gemeinsam versuchen wir diese Entscheidung abzuwenden. Folgt uns bei Telegram, denn wir vernetzen und informieren den Widerstand! Hier geht's zum Kanal: <URL> ₂, ! Übersicht Termine einsenden Ländergruppen Alle Spazis Der Kanal, der den Regierenden und Mitmach-Tätern Beine macht !</code> | <code>-0.5582272769313432</code> |
* Loss: [<code>AnglELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#angleloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_angle_sim"
  }
  ```

### Evaluation Dataset
Evaluation was performed on a dataset from the same Telegram channels as the training data. Again, GPT-4o was used to identify matching claims. However, for the test data, trained annotators validated the results and mismatches that were classified as matches by GPT-4o were removed. A ratio of 1:30 was chosen. In other words, for 1 match there are 30 mismatches. This is supposed to reflect a realistic scenario in which there are much more posts that are not identical to a query-post.
#### Manually checked Telegram Dataset


* Size: 18,355 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                            | sentence2                                                                            | label                                          |
  |:--------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-----------------------------------------------|
  | type    | string                                                                               | string                                                                               | int                                            |
  | details | <ul><li>min: 41 tokens</li><li>mean: 129.21 tokens</li><li>max: 391 tokens</li></ul> | <ul><li>min: 30 tokens</li><li>mean: 123.46 tokens</li><li>max: 379 tokens</li></ul> | <ul><li>0: ~96.50%</li><li>1: ~3.50%</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | label          |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>Instruct: Retrieve semantically similar text.<br>Query: Дорогие подписчики и гости канала! У человека назначенного президентом России и похожего на Владимира Путина обострилось хроническое заболевание почек. В связи с этим под угрозой планы проведения и посещения "Путиным" мероприятий, и совещаний в ближайшие дни.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <code>Ядерную дубину попова показали на канале Россия 1 Качественная графика , современный дизайн. Да и попов внушительно устрашающий . Подпишись сегодня и узнаешь, что будет завтра В ЧАТ СЮДА🪓</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <code>0</code> |
  | <code>Instruct: Retrieve semantically similar text.<br>Query: An alle Maskenbefürworter Schaut Euch dieses Video an, und entscheidet selbst wie Ihr mit Eurer Gesundheit umgehen wollt ! Hier wird die CO2 Konzentration unter der Maske gemessen. <URL></code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <code>Das mit den Masken, sozusagen wie einfach es ist Double hinzustellen und die Leute zu verarschen, zu belügen und zu betrügen, zeigte uns schon Stefan Raab. Wahrheit macht frei und Freiheit macht wahr <URL> Denk selbst und informiere Dich</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <code>0</code> |
  | <code>Instruct: Retrieve semantically similar text.<br>Query: Elementares Bor in flüssiger und ionischer Form ~ hochdosiert mit 3 mg~ Elementares Bor enthält konzentrierte Mineraltropfen (CMD), ein besonderes Meerwasserkonzentrat mit vollem Spektrum an Mineralstoffen und Spurenelementen. Fast vollständig von Natrium befreit, wird es durch Sonnenenergie natürlich konzentriert und mit zusätzlichem Bor in Form von Natriumborat ergänzt. leicht resorbierbar durch die gelöste, ionische Form Meerwasserkonzentrat aus dem Großen Salzsee in Utah, Vereinigte Staaten ideal dosierbar mit Opti-Dose-Tropfer Besonderheiten des Herstellers Vitals: erfüllt höchste Qualitätsanforderungen (ISO 22000) verwendet hochwertige Rohstoffe Nahrungsergänzungsmittel seit 1988 Die bio-apo lebt die ganzheitliche Philosophie schon seit über 25 Jahren. Elementares Bor empfehle ich dir hier Mit dem Code "vital15" schenken wir dir 15% Rabatt.</code> | <code>Beitrag zu 10 : 05 Ich esse sehr viele Früchte und Zucker , wie meine Grosseltern auch getan haben . Trotzdem hatte Niemand von uns Diabetes . Meine Schwester ist allergisch auf Fruchtzucker und isst auch sonst selten Süsses . Trotzdem hat sie Probleme mit zu hohen Zuckerwerten ! Impfungen und Fertignahrung sind die Hauptursache . Denkt immer daran , dass wir in jedem Bereich angelogen werden . Vitamine wurden auch nie isoliert und diese "Vitaminpräparate" sind Chemie und sehr schädlich , was sich erst Jahre später bemerkbar macht . Übrigens war die Pharmalobby , die schrieb , dass zu wenig Vitamine in Früchte und Gemüse enthalten sei . Damit "Vitaminmittel" überhaupt verkauft werden , muss man ja ein Mangel haben .</code> | <code>0</code> |
* Loss: [<code>AnglELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#angleloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_angle_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 8
- `learning_rate`: 2e-05
- `num_train_epochs`: 2
- `warmup_ratio`: 0.1
- `fp16`: True
- `push_to_hub`: True
- `hub_model_id`: Sami92/multiling-e5-large-instruct-claim-matching
- `push_to_hub_model_id`: multiling-e5-large-instruct-claim-matching

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 8
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: Sami92/multiling-e5-large-instruct-claim-matching
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: multiling-e5-large-instruct-claim-matching
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | loss   | FineTuned_8_max_ap |
|:------:|:----:|:-------------:|:------:|:------------------:|
| 0      | 0    | -             | -      | 0.4155             |
| 0.1252 | 100  | 3.1911        | 0.3698 | 0.4095             |
| 0.2504 | 200  | 3.0285        | 0.3700 | 0.4180             |
| 0.3756 | 300  | 2.9879        | 0.3623 | 0.3774             |
| 0.5009 | 400  | 2.9907        | 0.3641 | 0.4271             |
| 0.6261 | 500  | 2.9632        | 0.3441 | 0.4599             |
| 0.7513 | 600  | 2.9207        | 0.3323 | 0.4447             |
| 0.8765 | 700  | 2.9043        | 0.3271 | 0.5012             |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### AnglELoss
```bibtex
@misc{li2023angleoptimized,
    title={AnglE-optimized Text Embeddings}, 
    author={Xianming Li and Jing Li},
    year={2023},
    eprint={2309.12871},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->