--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-ucf101-subset results: [] --- # videomae-base-finetuned-ucf101-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co./MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3756 - Model Preparation Time: 0.0017 - Accuracy: 0.9161 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 148 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Accuracy | |:-------------:|:------:|:----:|:---------------:|:----------------------:|:--------:| | 2.1284 | 0.2568 | 38 | 1.8426 | 0.0017 | 0.4286 | | 0.8904 | 1.2568 | 76 | 0.7788 | 0.0017 | 0.7429 | | 0.3888 | 2.2568 | 114 | 0.4578 | 0.0017 | 0.7714 | | 0.2734 | 3.2297 | 148 | 0.3996 | 0.0017 | 0.7571 | ### Framework versions - Transformers 4.44.1 - Pytorch 2.2.2 - Datasets 2.21.0 - Tokenizers 0.19.1