michaelryoo
commited on
Rename xgen-mm-vid-inference-script.py to xgen-mm-vid-inference-script_hf.py
Browse files
xgen-mm-vid-inference-script.py → xgen-mm-vid-inference-script_hf.py
RENAMED
@@ -1,26 +1,13 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
# %%
|
6 |
-
cfg = XGenMMConfig()
|
7 |
-
model = XGenMMModelForConditionalGeneration(cfg)
|
8 |
-
model = model.cuda()
|
9 |
-
model = model.half()
|
10 |
-
|
11 |
-
|
12 |
-
# %%
|
13 |
-
from transformers import AutoTokenizer, AutoImageProcessor
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
)
|
19 |
-
image_processor = AutoImageProcessor.from_pretrained(
|
20 |
-
xgenmm_path, trust_remote_code=True
|
21 |
-
)
|
22 |
tokenizer = model.update_special_tokens(tokenizer)
|
23 |
-
|
|
|
24 |
model.eval()
|
25 |
tokenizer.padding_side = "left"
|
26 |
tokenizer.eos_token = "<|end|>"
|
@@ -34,9 +21,8 @@ import torchvision.io
|
|
34 |
|
35 |
import math
|
36 |
|
37 |
-
|
38 |
def sample_frames(vframes, num_frames):
|
39 |
-
frame_indice = np.linspace(
|
40 |
video = vframes[frame_indice]
|
41 |
video_list = []
|
42 |
for i in range(len(video)):
|
@@ -49,8 +35,7 @@ def generate(messages, images):
|
|
49 |
# images = [Image.open(BytesIO(img_bytes)) for img_bytes in img_bytes_list]
|
50 |
image_sizes = [image.size for image in images]
|
51 |
# Similar operation in model_worker.py
|
52 |
-
|
53 |
-
image_tensor = [image_processor([img])["pixel_values"].to(model.device, dtype=torch.float16) for img in images]
|
54 |
|
55 |
image_tensor = torch.stack(image_tensor, dim=1)
|
56 |
image_tensor = image_tensor.squeeze(2)
|
@@ -101,23 +86,18 @@ def predict(video_file, num_frames=8):
|
|
101 |
|
102 |
prompt = ""
|
103 |
prompt = prompt + "<image>\n"
|
104 |
-
prompt = prompt + "
|
|
|
105 |
messages = [{"role": "user", "content": prompt}]
|
106 |
return generate(messages, images)
|
107 |
|
108 |
-
|
109 |
# %%
|
110 |
-
|
111 |
-
|
112 |
-
your_checkpoint_path = ""
|
113 |
-
sd = torch.load(your_checkpoint_path)
|
114 |
-
model.load_state_dict(sd)
|
115 |
-
|
116 |
-
# %%
|
117 |
-
your_video_path = ""
|
118 |
print(
|
119 |
predict(
|
120 |
-
|
121 |
-
num_frames =
|
122 |
)
|
123 |
)
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForVision2Seq, AutoTokenizer, AutoImageProcessor, LogitsProcessor
|
2 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
model_name_or_path = "Salesforce/xgen-mm-vid-phi3-mini-r-v1.5-128tokens-16frames"
|
5 |
+
model = AutoModelForVision2Seq.from_pretrained(model_name_or_path, trust_remote_code=True)
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, use_fast=False, legacy=False)
|
7 |
+
image_processor = AutoImageProcessor.from_pretrained(model_name_or_path, trust_remote_code=True)
|
|
|
|
|
|
|
8 |
tokenizer = model.update_special_tokens(tokenizer)
|
9 |
+
|
10 |
+
model = model.to('cuda')
|
11 |
model.eval()
|
12 |
tokenizer.padding_side = "left"
|
13 |
tokenizer.eos_token = "<|end|>"
|
|
|
21 |
|
22 |
import math
|
23 |
|
|
|
24 |
def sample_frames(vframes, num_frames):
|
25 |
+
frame_indice = np.linspace(int(num_frames/2), len(vframes) - int(num_frames/2), num_frames, dtype=int)
|
26 |
video = vframes[frame_indice]
|
27 |
video_list = []
|
28 |
for i in range(len(video)):
|
|
|
35 |
# images = [Image.open(BytesIO(img_bytes)) for img_bytes in img_bytes_list]
|
36 |
image_sizes = [image.size for image in images]
|
37 |
# Similar operation in model_worker.py
|
38 |
+
image_tensor = [image_processor([img])["pixel_values"].to(model.device, dtype=torch.float32) for img in images]
|
|
|
39 |
|
40 |
image_tensor = torch.stack(image_tensor, dim=1)
|
41 |
image_tensor = image_tensor.squeeze(2)
|
|
|
86 |
|
87 |
prompt = ""
|
88 |
prompt = prompt + "<image>\n"
|
89 |
+
# prompt = prompt + "What's the main gist of the video ?"
|
90 |
+
prompt = prompt + "Please describe the primary object or subject in the video, capturing their attributes, actions, positions, and movements."
|
91 |
messages = [{"role": "user", "content": prompt}]
|
92 |
return generate(messages, images)
|
93 |
|
|
|
94 |
# %%
|
95 |
+
video_path = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
print(
|
97 |
predict(
|
98 |
+
video_path,
|
99 |
+
num_frames = 8
|
100 |
)
|
101 |
)
|
102 |
+
|
103 |
+
# %%
|