Upload xgen-mm-vid-inference-script.py
Browse files- xgen-mm-vid-inference-script.py +141 -0
xgen-mm-vid-inference-script.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# %%
|
2 |
+
from modeling_xgenmm import *
|
3 |
+
|
4 |
+
|
5 |
+
# %%
|
6 |
+
cfg = XGenMMConfig()
|
7 |
+
model = XGenMMModelForConditionalGeneration(cfg)
|
8 |
+
model = model.cuda()
|
9 |
+
model = model.half()
|
10 |
+
|
11 |
+
|
12 |
+
# %%
|
13 |
+
from transformers import AutoTokenizer, AutoImageProcessor
|
14 |
+
|
15 |
+
xgenmm_path = "Salesforce/xgen-mm-phi3-mini-instruct-interleave-r-v1.5"
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
17 |
+
xgenmm_path, trust_remote_code=True, use_fast=False, legacy=False
|
18 |
+
)
|
19 |
+
image_processor = AutoImageProcessor.from_pretrained(
|
20 |
+
xgenmm_path, trust_remote_code=True
|
21 |
+
)
|
22 |
+
tokenizer = model.update_special_tokens(tokenizer)
|
23 |
+
# model = model.to("cuda")
|
24 |
+
model.eval()
|
25 |
+
tokenizer.padding_side = "left"
|
26 |
+
tokenizer.eos_token = "<|end|>"
|
27 |
+
|
28 |
+
|
29 |
+
# %%
|
30 |
+
import numpy as np
|
31 |
+
import torchvision
|
32 |
+
|
33 |
+
import torchvision.io
|
34 |
+
|
35 |
+
import math
|
36 |
+
|
37 |
+
|
38 |
+
def sample_frames(vframes, num_frames):
|
39 |
+
frame_indice = np.linspace(0, len(vframes) - 1, num_frames, dtype=int)
|
40 |
+
video = vframes[frame_indice]
|
41 |
+
video_list = []
|
42 |
+
for i in range(len(video)):
|
43 |
+
video_list.append(torchvision.transforms.functional.to_pil_image(video[i]))
|
44 |
+
return video_list
|
45 |
+
|
46 |
+
|
47 |
+
def generate(messages, images):
|
48 |
+
# img_bytes_list = [base64.b64decode(image.encode("utf-8")) for image in images]
|
49 |
+
# images = [Image.open(BytesIO(img_bytes)) for img_bytes in img_bytes_list]
|
50 |
+
image_sizes = [image.size for image in images]
|
51 |
+
# Similar operation in model_worker.py
|
52 |
+
|
53 |
+
if cfg.vision_encoder_config.image_aspect_ratio == "anyres":
|
54 |
+
image_list = [
|
55 |
+
image_processor([img], image_aspect_ratio="anyres")["pixel_values"].to(
|
56 |
+
model.device, dtype=torch.float16
|
57 |
+
)
|
58 |
+
for img in images
|
59 |
+
]
|
60 |
+
|
61 |
+
inputs = {"pixel_values": [image_list]}
|
62 |
+
else:
|
63 |
+
image_tensor = [image_processor([img])["pixel_values"].to(model.device, dtype=torch.float16) for img in images]
|
64 |
+
|
65 |
+
for i in range(0, 8):
|
66 |
+
image_tensor[i] = torch.zeros([1, 1, 1, 3, 384, 384], device=model.device, dtype=torch.float16)
|
67 |
+
image_tensor = torch.stack(image_tensor, dim=1)
|
68 |
+
image_tensor = image_tensor.squeeze(2)
|
69 |
+
inputs = {"pixel_values": image_tensor}
|
70 |
+
|
71 |
+
full_conv = "<|system|>\nA chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.<|end|>\n"
|
72 |
+
for msg in messages:
|
73 |
+
msg_str = "<|{role}|>\n{content}<|end|>\n".format(
|
74 |
+
role=msg["role"], content=msg["content"]
|
75 |
+
)
|
76 |
+
full_conv += msg_str
|
77 |
+
|
78 |
+
full_conv += "<|assistant|>\n"
|
79 |
+
print(full_conv)
|
80 |
+
language_inputs = tokenizer([full_conv], return_tensors="pt")
|
81 |
+
for name, value in language_inputs.items():
|
82 |
+
language_inputs[name] = value.to(model.device)
|
83 |
+
inputs.update(language_inputs)
|
84 |
+
# print(inputs)
|
85 |
+
|
86 |
+
with torch.inference_mode():
|
87 |
+
generated_text = model.generate(
|
88 |
+
**inputs,
|
89 |
+
image_size=[image_sizes],
|
90 |
+
pad_token_id=tokenizer.pad_token_id,
|
91 |
+
eos_token_id=tokenizer.eos_token_id,
|
92 |
+
temperature=0.05,
|
93 |
+
do_sample=False,
|
94 |
+
max_new_tokens=1024,
|
95 |
+
top_p=None,
|
96 |
+
num_beams=1,
|
97 |
+
)
|
98 |
+
|
99 |
+
outputs = (
|
100 |
+
tokenizer.decode(generated_text[0], skip_special_tokens=True)
|
101 |
+
.split("<|end|>")[0]
|
102 |
+
.strip()
|
103 |
+
)
|
104 |
+
return outputs
|
105 |
+
|
106 |
+
|
107 |
+
def predict(video_file, num_frames=8):
|
108 |
+
vframes, _, _ = torchvision.io.read_video(
|
109 |
+
filename=video_file, pts_unit="sec", output_format="TCHW"
|
110 |
+
)
|
111 |
+
total_frames = len(vframes)
|
112 |
+
images = sample_frames(vframes, num_frames)
|
113 |
+
|
114 |
+
prompt = ""
|
115 |
+
prompt = prompt + "<image>\n"
|
116 |
+
prompt = prompt + "Describe this video."
|
117 |
+
messages = [{"role": "user", "content": prompt}]
|
118 |
+
return generate(messages, images)
|
119 |
+
|
120 |
+
|
121 |
+
# %%
|
122 |
+
import torch
|
123 |
+
|
124 |
+
your_checkpoint_path = ""
|
125 |
+
sd = torch.load(your_checkpoint_path)
|
126 |
+
|
127 |
+
sd = sd["model_state_dict"]
|
128 |
+
for k, v in list(sd.items()):
|
129 |
+
sd["vlm." + k] = v
|
130 |
+
del sd[k]
|
131 |
+
|
132 |
+
model.load_state_dict(sd)
|
133 |
+
|
134 |
+
# %%
|
135 |
+
your_video_path = ""
|
136 |
+
print(
|
137 |
+
predict(
|
138 |
+
your_video_path,
|
139 |
+
num_frames = 16
|
140 |
+
)
|
141 |
+
)
|