File size: 1,971 Bytes
70b1103 04d6513 b2d79c4 04d6513 5e1ad70 04d6513 f449f50 22824f5 04d6513 22824f5 b2d79c4 f449f50 04d6513 8f0af50 04d6513 8f0af50 04d6513 42f1231 04d6513 5d9d273 04d6513 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
license: apache-2.0
---
# XGen-7B-8K-Base
Official research release for the family of **XGen** models (`7B`) by Salesforce AI Research:
*Title*: [Long Sequence Modeling with XGen: A 7B LLM Trained on 8K Input Sequence Length](https://blog.salesforceairesearch.com/xgen/)
## Models
### Base models
* [XGen-7B-4K-Base](https://huggingface.co./Salesforce/xgen-7b-4k-base): XGen-7B model pre-trained under 4K sequence length.
* License: Apache-2.0
* [XGen-7B-8K-Base](https://huggingface.co./Salesforce/xgen-7b-8k-base): XGen-7B model pre-trained under 8K sequence length.
* License: Apache-2.0
### Instruction-finetuned models
Supervised finetuned model on public domain instructional data. Released for ***research purpose*** only.
* [XGen-7B-8K-Inst](https://huggingface.co./Salesforce/xgen-7b-8k-inst)
## How to run
The training data for the models are tokenized with OpenAI Tiktoken library.
To use this model, install the package via `pip`:
```sh
pip install tiktoken
```
The models can be used as auto-regressive samplers as follows:
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Salesforce/xgen-7b-8k-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Salesforce/xgen-7b-8k-base", torch_dtype=torch.bfloat16)
inputs = tokenizer("The world is", return_tensors="pt")
sample = model.generate(**inputs, max_length=128)
print(tokenizer.decode(sample[0]))
```
## Citation
```bibtex
@misc{XGen,
title={Long Sequence Modeling with XGen: A 7B LLM Trained on 8K Input Sequence Length},
author={Erik Nijkamp, Hiroaki Hayashi, Tian Xie, Congying Xia, Bo Pang, Rui Meng, Wojciech Kryscinski, Lifu Tu, Meghana Bhat, Semih Yavuz, Chen Xing, Jesse Vig, Lidiya Murakhovs'ka, Jason Wu, Yingbo Zhou, Shafiq Rayhan Joty, Caiming Xiong},
howpublished={Salesforce AI Research Blog},
year={2023},
url={https://blog.salesforceairesearch.com/xgen}
}
```
|