File size: 2,133 Bytes
2161edc
 
 
 
 
 
e80d416
2161edc
 
 
 
9e6aa8a
2161edc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33ca565
2161edc
 
 
 
ad57805
2161edc
 
 
 
 
 
 
 
 
 
 
 
 
e80d416
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
language: en
license: mit
tags:
- vision
- image-captioning
pipeline_tag: image-to-text
---

# InstructBLIP model

InstructBLIP model using [Flan-T5-xl](https://huggingface.co./google/flan-t5-xl) as language model. InstructBLIP was introduced in the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Dai et al.

Disclaimer: The team releasing InstructBLIP did not write a model card for this model so this model card has been written by the Hugging Face team.

## Model description

InstructBLIP is a visual instruction tuned version of [BLIP-2](https://huggingface.co./docs/transformers/main/model_doc/blip-2). Refer to the paper for details.

![InstructBLIP architecture](https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/instructblip_architecture.jpg)

## Intended uses & limitations

Usage is as follows:

```
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration
import torch
from PIL import Image
import requests

model = InstructBlipForConditionalGeneration.from_pretrained("Salesforce/instructblip-flan-t5-xl")
processor = InstructBlipProcessor.from_pretrained("Salesforce/instructblip-flan-t5-xl")

device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)

url = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg"
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
prompt = "What is unusual about this image?"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(device)

outputs = model.generate(
        **inputs,
        do_sample=False,
        num_beams=5,
        max_length=256,
        min_length=1,
        top_p=0.9,
        repetition_penalty=1.5,
        length_penalty=1.0,
        temperature=1,
)
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip()
print(generated_text)
```

### How to use

For code examples, we refer to the [documentation](https://huggingface.co./docs/transformers/main/en/model_doc/instructblip).