Convert git-lfs md, py, json files to normal git files (#8)
Browse files- Only include tokenizer.json in git-lfs, not *.py, *.md, *.json (8573a0bd77706616957e7d70e76682df1d7dd395)
- .gitattributes +0 -4
- config.json +40 -3
- configuration_gemma2.py +156 -3
- model.safetensors.index.json +295 -3
- modeling_gemma2.py +1395 -3
- special_tokens_map.json +34 -3
- tokenizer_config.json +2013 -3
.gitattributes
CHANGED
@@ -34,7 +34,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
-
*.md filter=lfs diff=lfs merge=lfs -text
|
38 |
-
*.json filter=lfs diff=lfs merge=lfs -text
|
39 |
-
*.py filter=lfs diff=lfs merge=lfs -text
|
40 |
-
*.DS_Store filter=lfs diff=lfs merge=lfs -text
|
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
config.json
CHANGED
@@ -1,3 +1,40 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Salesforce/SFR-Embedding-Code-2B_R",
|
3 |
+
"architectures": [
|
4 |
+
"CodeXEmbedModel2B"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_gemma2.CodeXEmbedConfig",
|
8 |
+
"AutoModel": "modeling_gemma2.CodeXEmbedModel2B"
|
9 |
+
},
|
10 |
+
"attention_bias": false,
|
11 |
+
"attention_dropout": 0.0,
|
12 |
+
"attn_logit_softcapping": 50.0,
|
13 |
+
"bos_token_id": 2,
|
14 |
+
"cache_implementation": "hybrid",
|
15 |
+
"eos_token_id": [
|
16 |
+
1,
|
17 |
+
107
|
18 |
+
],
|
19 |
+
"final_logit_softcapping": 30.0,
|
20 |
+
"head_dim": 256,
|
21 |
+
"hidden_act": "gelu_pytorch_tanh",
|
22 |
+
"hidden_activation": "gelu_pytorch_tanh",
|
23 |
+
"hidden_size": 2304,
|
24 |
+
"initializer_range": 0.02,
|
25 |
+
"intermediate_size": 9216,
|
26 |
+
"max_position_embeddings": 8192,
|
27 |
+
"model_type": "codexembed2b",
|
28 |
+
"num_attention_heads": 8,
|
29 |
+
"num_hidden_layers": 26,
|
30 |
+
"num_key_value_heads": 4,
|
31 |
+
"pad_token_id": 0,
|
32 |
+
"query_pre_attn_scalar": 256,
|
33 |
+
"rms_norm_eps": 1e-06,
|
34 |
+
"rope_theta": 10000.0,
|
35 |
+
"sliding_window": 4096,
|
36 |
+
"torch_dtype": "bfloat16",
|
37 |
+
"transformers_version": "4.45.1",
|
38 |
+
"use_cache": true,
|
39 |
+
"vocab_size": 256000
|
40 |
+
}
|
configuration_gemma2.py
CHANGED
@@ -1,3 +1,156 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
2 |
+
# This file was automatically generated from <path_to_diff_file.py>.
|
3 |
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
4 |
+
# the file from the diff. If any change should be done, please apply the change to the
|
5 |
+
# diff.py file directly.
|
6 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
7 |
+
# coding=utf-8
|
8 |
+
# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
|
9 |
+
#
|
10 |
+
#
|
11 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
12 |
+
# you may not use this file except in compliance with the License.
|
13 |
+
# You may obtain a copy of the License at
|
14 |
+
#
|
15 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
16 |
+
#
|
17 |
+
# Unless required by applicable law or agreed to in writing, software
|
18 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
19 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
20 |
+
# See the License for the specific language governing permissions and
|
21 |
+
# limitations under the License.
|
22 |
+
from transformers import PretrainedConfig
|
23 |
+
|
24 |
+
|
25 |
+
class CodeXEmbedConfig(PretrainedConfig):
|
26 |
+
r"""
|
27 |
+
This is the configuration class to store the configuration of a [`Gemma2Model`]. It is used to instantiate an Gemma2
|
28 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
29 |
+
defaults will yield a similar configuration to that of the Gemma2-7B.
|
30 |
+
e.g. [google/gemma2-7b](https://huggingface.co/google/gemma2-7b)
|
31 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
32 |
+
documentation from [`PretrainedConfig`] for more information.
|
33 |
+
Args:
|
34 |
+
vocab_size (`int`, *optional*, defaults to 256000):
|
35 |
+
Vocabulary size of the Gemma2 model. Defines the number of different tokens that can be represented by the
|
36 |
+
`inputs_ids` passed when calling [`Gemma2Model`]
|
37 |
+
hidden_size (`int`, *optional*, defaults to 3072):
|
38 |
+
Dimension of the hidden representations.
|
39 |
+
intermediate_size (`int`, *optional*, defaults to 24576):
|
40 |
+
Dimension of the MLP representations.
|
41 |
+
num_hidden_layers (`int`, *optional*, defaults to 28):
|
42 |
+
Number of hidden layers in the Transformer decoder.
|
43 |
+
num_attention_heads (`int`, *optional*, defaults to 16):
|
44 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
45 |
+
num_key_value_heads (`int`, *optional*, defaults to 16):
|
46 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
47 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
48 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
49 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
50 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
51 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
52 |
+
`num_attention_heads`.
|
53 |
+
head_dim (`int`, *optional*, defaults to 256):
|
54 |
+
The attention head dimension.
|
55 |
+
hidden_activation (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
56 |
+
The non-linear activation function (function or string) in the decoder.
|
57 |
+
max_position_embeddings (`int`, *optional*, defaults to 8192):
|
58 |
+
The maximum sequence length that this model might ever be used with.
|
59 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
60 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
61 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
62 |
+
The epsilon used by the rms normalization layers.
|
63 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
64 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
65 |
+
relevant if `config.is_decoder=True`.
|
66 |
+
pad_token_id (`int`, *optional*, defaults to 0):
|
67 |
+
Padding token id.
|
68 |
+
eos_token_id (`int`, *optional*, defaults to 1):
|
69 |
+
End of stream token id.
|
70 |
+
bos_token_id (`int`, *optional*, defaults to 2):
|
71 |
+
Beginning of stream token id.
|
72 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
|
73 |
+
Whether to tie weight embeddings
|
74 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
75 |
+
The base period of the RoPE embeddings.
|
76 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
77 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
78 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
79 |
+
The dropout ratio for the attention probabilities.
|
80 |
+
final_logit_softcapping (`float`, *optional*, defaults to 30.0): scaling factor when applying tanh softcapping on the logits.
|
81 |
+
attn_logit_softcapping (`float`, *optional*, defaults to 50.0): scaling factor when applying tanh softcapping on the attention scores.
|
82 |
+
query_pre_attn_scalar (`float`, *optional*, defaults to 224): scaling factor used on the attention scores
|
83 |
+
sliding_window (`int`, *optional*, defaults to 4096): in Gemma2, every other layer uses sliding window attention. This is the
|
84 |
+
size of the sliding window.
|
85 |
+
```python
|
86 |
+
>>> from transformers import Gemma2Model, CodeXEmbedConfig
|
87 |
+
>>> # Initializing a Gemma2 gemma2-9b style configuration
|
88 |
+
>>> configuration = CodeXEmbedConfig()
|
89 |
+
>>> # Initializing a model from the gemma2-9b style configuration
|
90 |
+
>>> model = Gemma2Model(configuration)
|
91 |
+
>>> # Accessing the model configuration
|
92 |
+
>>> configuration = model.config
|
93 |
+
```"""
|
94 |
+
|
95 |
+
model_type = "codexembed2b"
|
96 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
97 |
+
|
98 |
+
def __init__(
|
99 |
+
self,
|
100 |
+
vocab_size=256000,
|
101 |
+
hidden_size=3072,
|
102 |
+
intermediate_size=24576,
|
103 |
+
num_hidden_layers=28,
|
104 |
+
num_attention_heads=16,
|
105 |
+
num_key_value_heads=16,
|
106 |
+
head_dim=256,
|
107 |
+
hidden_activation="gelu_pytorch_tanh",
|
108 |
+
max_position_embeddings=8192,
|
109 |
+
initializer_range=0.02,
|
110 |
+
rms_norm_eps=1e-6,
|
111 |
+
use_cache=True,
|
112 |
+
pad_token_id=0,
|
113 |
+
eos_token_id=1,
|
114 |
+
bos_token_id=2,
|
115 |
+
tie_word_embeddings=True,
|
116 |
+
rope_theta=10000.0,
|
117 |
+
attention_bias=False,
|
118 |
+
attention_dropout=0.0,
|
119 |
+
final_logit_softcapping=30.0,
|
120 |
+
attn_logit_softcapping=50.0,
|
121 |
+
query_pre_attn_scalar=224,
|
122 |
+
sliding_window=4096,
|
123 |
+
**kwargs,
|
124 |
+
):
|
125 |
+
self.vocab_size = vocab_size
|
126 |
+
self.max_position_embeddings = max_position_embeddings
|
127 |
+
self.hidden_size = hidden_size
|
128 |
+
self.intermediate_size = intermediate_size
|
129 |
+
self.num_hidden_layers = num_hidden_layers
|
130 |
+
self.num_attention_heads = num_attention_heads
|
131 |
+
self.head_dim = head_dim
|
132 |
+
self.num_key_value_heads = num_key_value_heads
|
133 |
+
self.hidden_activation = hidden_activation
|
134 |
+
self.initializer_range = initializer_range
|
135 |
+
self.rms_norm_eps = rms_norm_eps
|
136 |
+
self.use_cache = use_cache
|
137 |
+
self.rope_theta = rope_theta
|
138 |
+
self.attention_bias = attention_bias
|
139 |
+
self.attention_dropout = attention_dropout
|
140 |
+
self.attn_logit_softcapping = attn_logit_softcapping
|
141 |
+
|
142 |
+
super().__init__(
|
143 |
+
pad_token_id=pad_token_id,
|
144 |
+
bos_token_id=bos_token_id,
|
145 |
+
eos_token_id=eos_token_id,
|
146 |
+
tie_word_embeddings=tie_word_embeddings,
|
147 |
+
**kwargs,
|
148 |
+
)
|
149 |
+
self.final_logit_softcapping = final_logit_softcapping
|
150 |
+
self.query_pre_attn_scalar = query_pre_attn_scalar
|
151 |
+
self.sliding_window = sliding_window
|
152 |
+
self.cache_implementation = "hybrid"
|
153 |
+
|
154 |
+
MODEL_TYPE = "codexembed2b"
|
155 |
+
from transformers import AutoConfig
|
156 |
+
AutoConfig.register(MODEL_TYPE, CodeXEmbedConfig)
|
model.safetensors.index.json
CHANGED
@@ -1,3 +1,295 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 5228683776
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"embed_tokens.weight": "model-00001-of-00002.safetensors",
|
7 |
+
"layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"layers.0.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"layers.0.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"layers.1.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"layers.1.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"layers.10.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"layers.10.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"layers.11.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"layers.11.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"layers.12.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"layers.12.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"layers.13.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"layers.13.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"layers.14.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"layers.14.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"layers.15.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"layers.15.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"layers.16.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"layers.16.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"layers.17.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"layers.17.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"layers.18.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"layers.18.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"layers.19.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"layers.19.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"layers.2.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"layers.2.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
149 |
+
"layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
151 |
+
"layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"layers.20.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"layers.20.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
158 |
+
"layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
161 |
+
"layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
163 |
+
"layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"layers.21.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"layers.21.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
173 |
+
"layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
175 |
+
"layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"layers.22.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"layers.22.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
181 |
+
"layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
182 |
+
"layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
184 |
+
"layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
185 |
+
"layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
186 |
+
"layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
187 |
+
"layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"layers.23.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"layers.23.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
193 |
+
"layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
194 |
+
"layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
195 |
+
"layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
196 |
+
"layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
197 |
+
"layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
198 |
+
"layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
199 |
+
"layers.24.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
200 |
+
"layers.24.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
201 |
+
"layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
206 |
+
"layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
207 |
+
"layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
208 |
+
"layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
209 |
+
"layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
210 |
+
"layers.25.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
211 |
+
"layers.25.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
212 |
+
"layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
213 |
+
"layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
214 |
+
"layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
215 |
+
"layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
216 |
+
"layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
218 |
+
"layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
221 |
+
"layers.3.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"layers.3.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
223 |
+
"layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
229 |
+
"layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
230 |
+
"layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
232 |
+
"layers.4.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
233 |
+
"layers.4.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
234 |
+
"layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
235 |
+
"layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
236 |
+
"layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
238 |
+
"layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
240 |
+
"layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
241 |
+
"layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
242 |
+
"layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"layers.5.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"layers.5.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
245 |
+
"layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
247 |
+
"layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
254 |
+
"layers.6.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"layers.6.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
256 |
+
"layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
257 |
+
"layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
258 |
+
"layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
259 |
+
"layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
261 |
+
"layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
262 |
+
"layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
263 |
+
"layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
264 |
+
"layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
265 |
+
"layers.7.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
266 |
+
"layers.7.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
268 |
+
"layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
269 |
+
"layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
270 |
+
"layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
271 |
+
"layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
273 |
+
"layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
274 |
+
"layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
275 |
+
"layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
276 |
+
"layers.8.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
277 |
+
"layers.8.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
278 |
+
"layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
279 |
+
"layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
280 |
+
"layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
281 |
+
"layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
282 |
+
"layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
283 |
+
"layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
284 |
+
"layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"layers.9.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"layers.9.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
289 |
+
"layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
290 |
+
"layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
292 |
+
"layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
293 |
+
"norm.weight": "model-00002-of-00002.safetensors"
|
294 |
+
}
|
295 |
+
}
|
modeling_gemma2.py
CHANGED
@@ -1,3 +1,1395 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
2 |
+
# This file was automatically generated from <path_to_diff_file.py>.
|
3 |
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
4 |
+
# the file from the diff. If any change should be done, please apply the change to the
|
5 |
+
# diff.py file directly.
|
6 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
7 |
+
# coding=utf-8
|
8 |
+
# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
|
9 |
+
#
|
10 |
+
#
|
11 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
12 |
+
# you may not use this file except in compliance with the License.
|
13 |
+
# You may obtain a copy of the License at
|
14 |
+
#
|
15 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
16 |
+
#
|
17 |
+
# Unless required by applicable law or agreed to in writing, software
|
18 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
19 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
20 |
+
# See the License for the specific language governing permissions and
|
21 |
+
# limitations under the License.
|
22 |
+
from typing import List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.utils.checkpoint
|
26 |
+
from torch import nn
|
27 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
28 |
+
|
29 |
+
from transformers.activations import ACT2FN
|
30 |
+
from transformers.cache_utils import Cache, HybridCache
|
31 |
+
from transformers.modeling_outputs import (
|
32 |
+
BaseModelOutputWithPast,
|
33 |
+
CausalLMOutputWithPast,
|
34 |
+
SequenceClassifierOutputWithPast,
|
35 |
+
TokenClassifierOutput,
|
36 |
+
)
|
37 |
+
from transformers.modeling_utils import PreTrainedModel
|
38 |
+
from transformers.utils import (
|
39 |
+
add_start_docstrings,
|
40 |
+
add_start_docstrings_to_model_forward,
|
41 |
+
is_flash_attn_2_available,
|
42 |
+
is_flash_attn_greater_or_equal,
|
43 |
+
is_flash_attn_greater_or_equal_2_10,
|
44 |
+
logging,
|
45 |
+
replace_return_docstrings,
|
46 |
+
)
|
47 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask_for_sdpa
|
48 |
+
from .configuration_gemma2 import CodeXEmbedConfig
|
49 |
+
from transformers import AutoTokenizer, AutoModel
|
50 |
+
import torch
|
51 |
+
import logging
|
52 |
+
import numpy as np
|
53 |
+
from typing import List, Dict
|
54 |
+
|
55 |
+
|
56 |
+
if is_flash_attn_2_available():
|
57 |
+
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
58 |
+
|
59 |
+
|
60 |
+
logger = logging.getLogger(__name__)
|
61 |
+
|
62 |
+
|
63 |
+
# Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position
|
64 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
65 |
+
attention_mask: torch.Tensor,
|
66 |
+
sequence_length: int,
|
67 |
+
target_length: int,
|
68 |
+
dtype: torch.dtype,
|
69 |
+
device: torch.device,
|
70 |
+
min_dtype: float,
|
71 |
+
cache_position: torch.Tensor,
|
72 |
+
batch_size: int,
|
73 |
+
):
|
74 |
+
"""
|
75 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
76 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
attention_mask (`torch.Tensor`):
|
80 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
81 |
+
sequence_length (`int`):
|
82 |
+
The sequence length being processed.
|
83 |
+
target_length (`int`):
|
84 |
+
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
85 |
+
dtype (`torch.dtype`):
|
86 |
+
The dtype to use for the 4D attention mask.
|
87 |
+
device (`torch.device`):
|
88 |
+
The device to plcae the 4D attention mask on.
|
89 |
+
min_dtype (`float`):
|
90 |
+
The minimum value representable with the dtype `dtype`.
|
91 |
+
cache_position (`torch.Tensor`):
|
92 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
93 |
+
batch_size (`torch.Tensor`):
|
94 |
+
Batch size.
|
95 |
+
"""
|
96 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
97 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
98 |
+
causal_mask = attention_mask
|
99 |
+
else:
|
100 |
+
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
101 |
+
if sequence_length != 1:
|
102 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
103 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
104 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
105 |
+
if attention_mask is not None:
|
106 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
107 |
+
mask_length = attention_mask.shape[-1]
|
108 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
109 |
+
padding_mask = padding_mask == 0
|
110 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
111 |
+
padding_mask, min_dtype
|
112 |
+
)
|
113 |
+
|
114 |
+
return causal_mask
|
115 |
+
|
116 |
+
|
117 |
+
class Gemma2RMSNorm(nn.Module):
|
118 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
119 |
+
super().__init__()
|
120 |
+
self.eps = eps
|
121 |
+
self.weight = nn.Parameter(torch.zeros(dim))
|
122 |
+
|
123 |
+
def _norm(self, x):
|
124 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
125 |
+
|
126 |
+
def forward(self, x):
|
127 |
+
output = self._norm(x.float())
|
128 |
+
# Llama does x.to(float16) * w whilst Gemma2 is (x * w).to(float16)
|
129 |
+
# See https://github.com/huggingface/transformers/pull/29402
|
130 |
+
output = output * (1.0 + self.weight.float())
|
131 |
+
return output.type_as(x)
|
132 |
+
|
133 |
+
def extra_repr(self):
|
134 |
+
return f"{tuple(self.weight.shape)}, eps={self.eps}"
|
135 |
+
|
136 |
+
|
137 |
+
class Gemma2RotaryEmbedding(nn.Module):
|
138 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
139 |
+
super().__init__()
|
140 |
+
|
141 |
+
self.dim = dim
|
142 |
+
self.max_position_embeddings = max_position_embeddings
|
143 |
+
self.base = base
|
144 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim))
|
145 |
+
self.register_buffer("inv_freq", tensor=inv_freq, persistent=False)
|
146 |
+
|
147 |
+
@torch.no_grad()
|
148 |
+
def forward(self, x, position_ids, seq_len=None):
|
149 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
150 |
+
self.inv_freq.to(x.device)
|
151 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
152 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
153 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
154 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
155 |
+
device_type = x.device.type
|
156 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
157 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
158 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
159 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
160 |
+
cos = emb.cos()
|
161 |
+
sin = emb.sin()
|
162 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
163 |
+
|
164 |
+
|
165 |
+
def rotate_half(x):
|
166 |
+
"""Rotates half the hidden dims of the input."""
|
167 |
+
x1 = x[..., : x.shape[-1] // 2]
|
168 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
169 |
+
return torch.cat((-x2, x1), dim=-1)
|
170 |
+
|
171 |
+
|
172 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
173 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
174 |
+
|
175 |
+
Args:
|
176 |
+
q (`torch.Tensor`): The query tensor.
|
177 |
+
k (`torch.Tensor`): The key tensor.
|
178 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
179 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
180 |
+
position_ids (`torch.Tensor`, *optional*):
|
181 |
+
Deprecated and unused.
|
182 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
183 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
184 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
185 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
186 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
187 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
188 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
189 |
+
Returns:
|
190 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
191 |
+
"""
|
192 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
193 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
194 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
195 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
196 |
+
return q_embed, k_embed
|
197 |
+
|
198 |
+
|
199 |
+
class Gemma2MLP(nn.Module):
|
200 |
+
def __init__(self, config):
|
201 |
+
super().__init__()
|
202 |
+
self.config = config
|
203 |
+
self.hidden_size = config.hidden_size
|
204 |
+
self.intermediate_size = config.intermediate_size
|
205 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
206 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
207 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
208 |
+
self.act_fn = ACT2FN[config.hidden_activation]
|
209 |
+
|
210 |
+
def forward(self, x):
|
211 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
212 |
+
|
213 |
+
|
214 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
215 |
+
"""
|
216 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
217 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
218 |
+
"""
|
219 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
220 |
+
if n_rep == 1:
|
221 |
+
return hidden_states
|
222 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
223 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
224 |
+
|
225 |
+
|
226 |
+
class Gemma2Attention(nn.Module):
|
227 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
228 |
+
|
229 |
+
def __init__(self, config: CodeXEmbedConfig, layer_idx: Optional[int] = None, is_causal: bool=False):
|
230 |
+
super().__init__()
|
231 |
+
self.config = config
|
232 |
+
self.layer_idx = layer_idx
|
233 |
+
if layer_idx is None:
|
234 |
+
logger.warning_once(
|
235 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
236 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
237 |
+
"when creating this class."
|
238 |
+
)
|
239 |
+
|
240 |
+
self.attention_dropout = config.attention_dropout
|
241 |
+
self.hidden_size = config.hidden_size
|
242 |
+
self.num_heads = config.num_attention_heads
|
243 |
+
self.head_dim = config.head_dim
|
244 |
+
self.num_key_value_heads = config.num_key_value_heads
|
245 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
246 |
+
self.max_position_embeddings = config.max_position_embeddings
|
247 |
+
self.rope_theta = config.rope_theta
|
248 |
+
self.is_causal = is_causal
|
249 |
+
self.scaling = config.query_pre_attn_scalar**-0.5
|
250 |
+
|
251 |
+
if self.hidden_size % self.num_heads != 0:
|
252 |
+
raise ValueError(
|
253 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
254 |
+
f" and `num_heads`: {self.num_heads})."
|
255 |
+
)
|
256 |
+
|
257 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
258 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
259 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
260 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
|
261 |
+
self.rotary_emb = Gemma2RotaryEmbedding(
|
262 |
+
self.head_dim,
|
263 |
+
max_position_embeddings=self.max_position_embeddings,
|
264 |
+
base=self.rope_theta,
|
265 |
+
)
|
266 |
+
self.sliding_window = config.sliding_window if not bool(layer_idx % 2) else None
|
267 |
+
|
268 |
+
def forward(
|
269 |
+
self,
|
270 |
+
hidden_states: torch.Tensor,
|
271 |
+
attention_mask: Optional[torch.Tensor] = None,
|
272 |
+
position_ids: Optional[torch.LongTensor] = None,
|
273 |
+
past_key_value: Optional[Cache] = None,
|
274 |
+
output_attentions: bool = False,
|
275 |
+
use_cache: bool = False,
|
276 |
+
cache_position: Optional[torch.LongTensor] = None,
|
277 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
278 |
+
bsz, q_len, _ = hidden_states.size()
|
279 |
+
|
280 |
+
query_states = self.q_proj(hidden_states)
|
281 |
+
key_states = self.k_proj(hidden_states)
|
282 |
+
value_states = self.v_proj(hidden_states)
|
283 |
+
|
284 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
285 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
286 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
287 |
+
|
288 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
289 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
290 |
+
|
291 |
+
if past_key_value is not None:
|
292 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
293 |
+
cache_kwargs = {
|
294 |
+
"sin": sin,
|
295 |
+
"cos": cos,
|
296 |
+
"sliding_window": self.sliding_window,
|
297 |
+
"cache_position": cache_position,
|
298 |
+
}
|
299 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
300 |
+
|
301 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
302 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
303 |
+
|
304 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scaling
|
305 |
+
|
306 |
+
if self.config.attn_logit_softcapping is not None:
|
307 |
+
attn_weights = attn_weights / self.config.attn_logit_softcapping
|
308 |
+
attn_weights = torch.tanh(attn_weights)
|
309 |
+
attn_weights = attn_weights * self.config.attn_logit_softcapping
|
310 |
+
|
311 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
312 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
313 |
+
attn_weights = attn_weights + causal_mask
|
314 |
+
|
315 |
+
# upcast attention to fp32
|
316 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
317 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
318 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
319 |
+
|
320 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
321 |
+
raise ValueError(
|
322 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
323 |
+
f" {attn_output.size()}"
|
324 |
+
)
|
325 |
+
|
326 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
327 |
+
|
328 |
+
attn_output = attn_output.view(bsz, q_len, -1)
|
329 |
+
attn_output = self.o_proj(attn_output)
|
330 |
+
|
331 |
+
if not output_attentions:
|
332 |
+
attn_weights = None
|
333 |
+
|
334 |
+
return attn_output, attn_weights, past_key_value
|
335 |
+
|
336 |
+
|
337 |
+
class Gemma2FlashAttention2(Gemma2Attention):
|
338 |
+
"""
|
339 |
+
Gemma2 flash attention module. This module inherits from `Gemma2Attention` as the weights of the module stays
|
340 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
341 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
342 |
+
"""
|
343 |
+
|
344 |
+
def __init__(self, *args, **kwargs):
|
345 |
+
super().__init__(*args, **kwargs)
|
346 |
+
|
347 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
348 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
349 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
350 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
351 |
+
|
352 |
+
def forward(
|
353 |
+
self,
|
354 |
+
hidden_states: torch.Tensor,
|
355 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
356 |
+
position_ids: Optional[torch.LongTensor] = None,
|
357 |
+
past_key_value: Optional[Cache] = None,
|
358 |
+
output_attentions: bool = False,
|
359 |
+
use_cache: bool = False,
|
360 |
+
cache_position: Optional[torch.LongTensor] = None,
|
361 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
362 |
+
output_attentions = False
|
363 |
+
|
364 |
+
bsz, q_len, _ = hidden_states.size()
|
365 |
+
|
366 |
+
query_states = self.q_proj(hidden_states)
|
367 |
+
key_states = self.k_proj(hidden_states)
|
368 |
+
value_states = self.v_proj(hidden_states)
|
369 |
+
|
370 |
+
# Flash attention requires the input to have the shape
|
371 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
372 |
+
# therefore we just need to keep the original shape
|
373 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
374 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
375 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
376 |
+
|
377 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
378 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
379 |
+
|
380 |
+
if past_key_value is not None:
|
381 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
382 |
+
cache_kwargs = {
|
383 |
+
"sin": sin,
|
384 |
+
"cos": cos,
|
385 |
+
"sliding_window": self.sliding_window,
|
386 |
+
"cache_position": cache_position,
|
387 |
+
}
|
388 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
389 |
+
|
390 |
+
if attention_mask is not None:
|
391 |
+
seq_len = attention_mask.shape[1]
|
392 |
+
key_states = key_states[:, :, :seq_len]
|
393 |
+
value_states = value_states[:, :, :seq_len]
|
394 |
+
|
395 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
396 |
+
# to be able to avoid many of these transpose/reshape/view.
|
397 |
+
query_states = query_states.transpose(1, 2)
|
398 |
+
key_states = key_states.transpose(1, 2)
|
399 |
+
value_states = value_states.transpose(1, 2)
|
400 |
+
|
401 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
402 |
+
|
403 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
404 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
405 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
406 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
407 |
+
# in fp32. (Gemma2RMSNorm handles it correctly)
|
408 |
+
|
409 |
+
input_dtype = query_states.dtype
|
410 |
+
if input_dtype == torch.float32:
|
411 |
+
if torch.is_autocast_enabled():
|
412 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
413 |
+
# Handle the case where the model is quantized
|
414 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
415 |
+
target_dtype = self.config._pre_quantization_dtype
|
416 |
+
else:
|
417 |
+
target_dtype = self.q_proj.weight.dtype
|
418 |
+
|
419 |
+
logger.warning_once(
|
420 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
421 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
422 |
+
f" {target_dtype}."
|
423 |
+
)
|
424 |
+
|
425 |
+
query_states = query_states.to(target_dtype)
|
426 |
+
key_states = key_states.to(target_dtype)
|
427 |
+
value_states = value_states.to(target_dtype)
|
428 |
+
|
429 |
+
attn_output = _flash_attention_forward(
|
430 |
+
query_states,
|
431 |
+
key_states,
|
432 |
+
value_states,
|
433 |
+
attention_mask,
|
434 |
+
q_len,
|
435 |
+
dropout=dropout_rate,
|
436 |
+
softmax_scale=self.scaling,
|
437 |
+
is_causal=self.is_causal,
|
438 |
+
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
439 |
+
softcap=self.config.attn_logit_softcapping if is_flash_attn_greater_or_equal("2.6.0") else None,
|
440 |
+
)
|
441 |
+
|
442 |
+
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
443 |
+
attn_output = self.o_proj(attn_output)
|
444 |
+
|
445 |
+
if not output_attentions:
|
446 |
+
attn_weights = None
|
447 |
+
|
448 |
+
return attn_output, attn_weights, past_key_value
|
449 |
+
|
450 |
+
|
451 |
+
class Gemma2SdpaAttention(Gemma2Attention):
|
452 |
+
"""
|
453 |
+
Gemma2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
454 |
+
`Gemma2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
455 |
+
SDPA API.
|
456 |
+
"""
|
457 |
+
|
458 |
+
# Adapted from Gemma2Attention.forward
|
459 |
+
def forward(
|
460 |
+
self,
|
461 |
+
hidden_states: torch.Tensor,
|
462 |
+
attention_mask: Optional[torch.Tensor] = None,
|
463 |
+
position_ids: Optional[torch.LongTensor] = None,
|
464 |
+
past_key_value: Optional[Cache] = None,
|
465 |
+
output_attentions: bool = False,
|
466 |
+
use_cache: bool = False,
|
467 |
+
cache_position: Optional[torch.LongTensor] = None,
|
468 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
469 |
+
if output_attentions:
|
470 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
471 |
+
logger.warning_once(
|
472 |
+
"Gemma2Model is using Gemma2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
473 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
474 |
+
)
|
475 |
+
return super().forward(
|
476 |
+
hidden_states=hidden_states,
|
477 |
+
attention_mask=attention_mask,
|
478 |
+
position_ids=position_ids,
|
479 |
+
past_key_value=past_key_value,
|
480 |
+
output_attentions=output_attentions,
|
481 |
+
use_cache=use_cache,
|
482 |
+
cache_position=cache_position,
|
483 |
+
)
|
484 |
+
|
485 |
+
bsz, q_len, _ = hidden_states.size()
|
486 |
+
|
487 |
+
query_states = self.q_proj(hidden_states)
|
488 |
+
key_states = self.k_proj(hidden_states)
|
489 |
+
value_states = self.v_proj(hidden_states)
|
490 |
+
|
491 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
492 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
493 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
494 |
+
|
495 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
496 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
497 |
+
|
498 |
+
if past_key_value is not None:
|
499 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
500 |
+
cache_kwargs = {
|
501 |
+
"sin": sin,
|
502 |
+
"cos": cos,
|
503 |
+
"sliding_window": self.sliding_window,
|
504 |
+
"cache_position": cache_position,
|
505 |
+
}
|
506 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
507 |
+
|
508 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
509 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
510 |
+
|
511 |
+
causal_mask = attention_mask
|
512 |
+
if attention_mask is not None:
|
513 |
+
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
514 |
+
|
515 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
516 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
517 |
+
if query_states.device.type == "cuda" and causal_mask is not None:
|
518 |
+
query_states = query_states.contiguous()
|
519 |
+
key_states = key_states.contiguous()
|
520 |
+
value_states = value_states.contiguous()
|
521 |
+
|
522 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
523 |
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
524 |
+
# We pass our own mask, so is_causal must be False
|
525 |
+
is_causal = True if causal_mask is None and q_len > 1 else False
|
526 |
+
|
527 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
528 |
+
query_states,
|
529 |
+
key_states,
|
530 |
+
value_states,
|
531 |
+
attn_mask=causal_mask,
|
532 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
533 |
+
is_causal=is_causal,
|
534 |
+
scale=self.scaling,
|
535 |
+
)
|
536 |
+
|
537 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
538 |
+
attn_output = attn_output.view(bsz, q_len, -1)
|
539 |
+
|
540 |
+
attn_output = self.o_proj(attn_output)
|
541 |
+
|
542 |
+
return attn_output, None, past_key_value
|
543 |
+
|
544 |
+
|
545 |
+
GEMMA2_ATTENTION_CLASSES = {
|
546 |
+
"eager": Gemma2Attention,
|
547 |
+
"flash_attention_2": Gemma2FlashAttention2,
|
548 |
+
"sdpa": Gemma2SdpaAttention,
|
549 |
+
}
|
550 |
+
|
551 |
+
|
552 |
+
class Gemma2DecoderLayer(nn.Module):
|
553 |
+
def __init__(self, config: CodeXEmbedConfig, layer_idx: int, is_causal: bool):
|
554 |
+
super().__init__()
|
555 |
+
self.config = config
|
556 |
+
self.hidden_size = config.hidden_size
|
557 |
+
|
558 |
+
self.self_attn = GEMMA2_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx, is_causal=is_causal)
|
559 |
+
|
560 |
+
self.mlp = Gemma2MLP(config)
|
561 |
+
self.input_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
562 |
+
self.post_attention_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
563 |
+
|
564 |
+
self.is_sliding = not bool(layer_idx % 2)
|
565 |
+
self.pre_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
566 |
+
self.post_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
567 |
+
self.sliding_window = config.sliding_window
|
568 |
+
|
569 |
+
def forward(
|
570 |
+
self,
|
571 |
+
hidden_states: torch.Tensor,
|
572 |
+
attention_mask: Optional[torch.Tensor] = None,
|
573 |
+
position_ids: Optional[torch.LongTensor] = None,
|
574 |
+
past_key_value: Optional[Cache] = None,
|
575 |
+
output_attentions: Optional[bool] = False,
|
576 |
+
use_cache: Optional[bool] = False,
|
577 |
+
cache_position: Optional[torch.LongTensor] = None,
|
578 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
579 |
+
if self.is_sliding and attention_mask is not None: # efficient SDPA and no padding
|
580 |
+
# Flash-attn is a 2D tensor
|
581 |
+
if self.config._attn_implementation == "flash_attention_2":
|
582 |
+
attention_mask = attention_mask[:, -self.sliding_window :]
|
583 |
+
else:
|
584 |
+
min_dtype = torch.finfo(attention_mask.dtype).min
|
585 |
+
sliding_window_mask = torch.tril(
|
586 |
+
torch.ones_like(attention_mask, dtype=torch.bool), diagonal=-self.sliding_window
|
587 |
+
)
|
588 |
+
attention_mask = torch.where(sliding_window_mask, min_dtype, attention_mask)
|
589 |
+
if attention_mask.shape[-1] <= 1: # when decoding
|
590 |
+
attention_mask = attention_mask[:, :, :, -self.sliding_window :]
|
591 |
+
|
592 |
+
residual = hidden_states
|
593 |
+
|
594 |
+
hidden_states = self.input_layernorm(hidden_states)
|
595 |
+
|
596 |
+
# Self Attention
|
597 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
598 |
+
hidden_states=hidden_states,
|
599 |
+
attention_mask=attention_mask,
|
600 |
+
position_ids=position_ids,
|
601 |
+
past_key_value=past_key_value,
|
602 |
+
output_attentions=output_attentions,
|
603 |
+
use_cache=use_cache,
|
604 |
+
cache_position=cache_position,
|
605 |
+
)
|
606 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
607 |
+
hidden_states = residual + hidden_states
|
608 |
+
|
609 |
+
residual = hidden_states
|
610 |
+
hidden_states = self.pre_feedforward_layernorm(hidden_states)
|
611 |
+
hidden_states = self.mlp(hidden_states)
|
612 |
+
hidden_states = self.post_feedforward_layernorm(hidden_states)
|
613 |
+
hidden_states = residual + hidden_states
|
614 |
+
|
615 |
+
outputs = (hidden_states,)
|
616 |
+
|
617 |
+
if output_attentions:
|
618 |
+
outputs += (self_attn_weights,)
|
619 |
+
|
620 |
+
if use_cache:
|
621 |
+
outputs += (present_key_value,)
|
622 |
+
|
623 |
+
return outputs
|
624 |
+
|
625 |
+
|
626 |
+
GEMMA2_START_DOCSTRING = r"""
|
627 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
628 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
629 |
+
etc.)
|
630 |
+
|
631 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
632 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
633 |
+
and behavior.
|
634 |
+
|
635 |
+
Parameters:
|
636 |
+
config ([`CodeXEmbedConfig`]):
|
637 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
638 |
+
load the weights associated with the model, only the configuration. Check out the
|
639 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
640 |
+
"""
|
641 |
+
|
642 |
+
|
643 |
+
@add_start_docstrings(
|
644 |
+
"The bare Gemma2 Model outputting raw hidden-states without any specific head on top.",
|
645 |
+
GEMMA2_START_DOCSTRING,
|
646 |
+
)
|
647 |
+
class Gemma2PreTrainedModel(PreTrainedModel):
|
648 |
+
config_class = CodeXEmbedConfig
|
649 |
+
base_model_prefix = "model"
|
650 |
+
supports_gradient_checkpointing = True
|
651 |
+
_no_split_modules = ["Gemma2DecoderLayer"]
|
652 |
+
_skip_keys_device_placement = ["past_key_values"]
|
653 |
+
_supports_flash_attn_2 = True
|
654 |
+
_supports_sdpa = True
|
655 |
+
_supports_cache_class = True
|
656 |
+
_supports_quantized_cache = False
|
657 |
+
_supports_static_cache = True
|
658 |
+
|
659 |
+
def _init_weights(self, module):
|
660 |
+
std = self.config.initializer_range
|
661 |
+
if isinstance(module, nn.Linear):
|
662 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
663 |
+
if module.bias is not None:
|
664 |
+
module.bias.data.zero_()
|
665 |
+
elif isinstance(module, nn.Embedding):
|
666 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
667 |
+
if module.padding_idx is not None:
|
668 |
+
module.weight.data[module.padding_idx].zero_()
|
669 |
+
|
670 |
+
|
671 |
+
_CONFIG_FOR_DOC = "CodeXEmbedConfig"
|
672 |
+
|
673 |
+
|
674 |
+
GEMMA2_INPUTS_DOCSTRING = r"""
|
675 |
+
Args:
|
676 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
677 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
678 |
+
it.
|
679 |
+
|
680 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
681 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
682 |
+
|
683 |
+
[What are input IDs?](../glossary#input-ids)
|
684 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
685 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
686 |
+
|
687 |
+
- 1 for tokens that are **not masked**,
|
688 |
+
- 0 for tokens that are **masked**.
|
689 |
+
|
690 |
+
[What are attention masks?](../glossary#attention-mask)
|
691 |
+
|
692 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
693 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
694 |
+
|
695 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
696 |
+
`past_key_values`).
|
697 |
+
|
698 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
699 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
700 |
+
information on the default strategy.
|
701 |
+
|
702 |
+
- 1 indicates the head is **not masked**,
|
703 |
+
- 0 indicates the head is **masked**.
|
704 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
705 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
706 |
+
config.n_positions - 1]`.
|
707 |
+
|
708 |
+
[What are position IDs?](../glossary#position-ids)
|
709 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
710 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
711 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
712 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
713 |
+
|
714 |
+
Two formats are allowed:
|
715 |
+
- a [`~cache_utils.Cache`] instance;
|
716 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
717 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
718 |
+
cache format.
|
719 |
+
|
720 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
721 |
+
legacy cache format will be returned.
|
722 |
+
|
723 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
724 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
725 |
+
of shape `(batch_size, sequence_length)`.
|
726 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
727 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
728 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
729 |
+
model's internal embedding lookup matrix.
|
730 |
+
use_cache (`bool`, *optional*):
|
731 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
732 |
+
`past_key_values`).
|
733 |
+
output_attentions (`bool`, *optional*):
|
734 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
735 |
+
tensors for more detail.
|
736 |
+
output_hidden_states (`bool`, *optional*):
|
737 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
738 |
+
more detail.
|
739 |
+
return_dict (`bool`, *optional*):
|
740 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
741 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
742 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
743 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
744 |
+
the complete sequence length.
|
745 |
+
"""
|
746 |
+
|
747 |
+
|
748 |
+
@add_start_docstrings(
|
749 |
+
"The bare Gemma2 Model outputting raw hidden-states without any specific head on top.",
|
750 |
+
GEMMA2_START_DOCSTRING,
|
751 |
+
)
|
752 |
+
class Gemma2Model(Gemma2PreTrainedModel):
|
753 |
+
"""
|
754 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Gemma2DecoderLayer`]
|
755 |
+
|
756 |
+
Args:
|
757 |
+
config: CodeXEmbedConfig
|
758 |
+
"""
|
759 |
+
|
760 |
+
def __init__(self, config: CodeXEmbedConfig, **kwargs):
|
761 |
+
super().__init__(config)
|
762 |
+
self.padding_idx = config.pad_token_id
|
763 |
+
self.vocab_size = config.vocab_size
|
764 |
+
|
765 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
766 |
+
self.is_causal = getattr(kwargs, 'is_causal', False)
|
767 |
+
self.layers = nn.ModuleList(
|
768 |
+
[Gemma2DecoderLayer(config, layer_idx, self.is_causal) for layer_idx in range(config.num_hidden_layers)]
|
769 |
+
)
|
770 |
+
self.norm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
771 |
+
self.gradient_checkpointing = False
|
772 |
+
|
773 |
+
# Initialize weights and apply final processing
|
774 |
+
self.post_init()
|
775 |
+
|
776 |
+
def get_input_embeddings(self):
|
777 |
+
return self.embed_tokens
|
778 |
+
|
779 |
+
def set_input_embeddings(self, value):
|
780 |
+
self.embed_tokens = value
|
781 |
+
|
782 |
+
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
|
783 |
+
def forward(
|
784 |
+
self,
|
785 |
+
input_ids: torch.LongTensor = None,
|
786 |
+
attention_mask: Optional[torch.Tensor] = None,
|
787 |
+
position_ids: Optional[torch.LongTensor] = None,
|
788 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
789 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
790 |
+
use_cache: Optional[bool] = None,
|
791 |
+
output_attentions: Optional[bool] = None,
|
792 |
+
output_hidden_states: Optional[bool] = None,
|
793 |
+
return_dict: Optional[bool] = None,
|
794 |
+
cache_position: Optional[torch.LongTensor] = None,
|
795 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
796 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
797 |
+
output_hidden_states = (
|
798 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
799 |
+
)
|
800 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
801 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
802 |
+
|
803 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
804 |
+
raise ValueError(
|
805 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
806 |
+
)
|
807 |
+
|
808 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
809 |
+
logger.warning_once(
|
810 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
811 |
+
)
|
812 |
+
use_cache = False
|
813 |
+
|
814 |
+
if inputs_embeds is None:
|
815 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
816 |
+
|
817 |
+
if cache_position is None:
|
818 |
+
cache_position = torch.arange(0, inputs_embeds.shape[1], device=inputs_embeds.device)
|
819 |
+
|
820 |
+
if position_ids is None:
|
821 |
+
position_ids = cache_position.unsqueeze(0)
|
822 |
+
|
823 |
+
if self.is_causal:
|
824 |
+
causal_mask = self._update_attention_mask(
|
825 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
826 |
+
)
|
827 |
+
else:
|
828 |
+
causal_mask = _prepare_4d_attention_mask_for_sdpa(
|
829 |
+
attention_mask, inputs_embeds.dtype
|
830 |
+
)
|
831 |
+
|
832 |
+
# embed positions
|
833 |
+
hidden_states = inputs_embeds
|
834 |
+
|
835 |
+
# normalized
|
836 |
+
# Gemma2 downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
|
837 |
+
# See https://github.com/huggingface/transformers/pull/29402
|
838 |
+
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
|
839 |
+
hidden_states = hidden_states * normalizer
|
840 |
+
|
841 |
+
all_hidden_states = () if output_hidden_states else None
|
842 |
+
all_self_attns = () if output_attentions else None
|
843 |
+
|
844 |
+
for decoder_layer in self.layers:
|
845 |
+
if output_hidden_states:
|
846 |
+
all_hidden_states += (hidden_states,)
|
847 |
+
|
848 |
+
if self.gradient_checkpointing and self.training:
|
849 |
+
layer_outputs = self._gradient_checkpointing_func(
|
850 |
+
decoder_layer.__call__,
|
851 |
+
hidden_states,
|
852 |
+
causal_mask,
|
853 |
+
position_ids,
|
854 |
+
past_key_values,
|
855 |
+
output_attentions,
|
856 |
+
use_cache,
|
857 |
+
cache_position,
|
858 |
+
)
|
859 |
+
else:
|
860 |
+
layer_outputs = decoder_layer(
|
861 |
+
hidden_states,
|
862 |
+
attention_mask=causal_mask,
|
863 |
+
position_ids=position_ids,
|
864 |
+
past_key_value=past_key_values,
|
865 |
+
output_attentions=output_attentions,
|
866 |
+
use_cache=use_cache,
|
867 |
+
cache_position=cache_position,
|
868 |
+
)
|
869 |
+
|
870 |
+
hidden_states = layer_outputs[0]
|
871 |
+
|
872 |
+
if output_attentions:
|
873 |
+
all_self_attns += (layer_outputs[1],)
|
874 |
+
|
875 |
+
hidden_states = self.norm(hidden_states)
|
876 |
+
|
877 |
+
# add hidden states from the last decoder layer
|
878 |
+
if output_hidden_states:
|
879 |
+
all_hidden_states += (hidden_states,)
|
880 |
+
|
881 |
+
next_cache = past_key_values if use_cache else None
|
882 |
+
|
883 |
+
if not return_dict:
|
884 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
885 |
+
return BaseModelOutputWithPast(
|
886 |
+
last_hidden_state=hidden_states,
|
887 |
+
past_key_values=next_cache,
|
888 |
+
hidden_states=all_hidden_states,
|
889 |
+
attentions=all_self_attns,
|
890 |
+
)
|
891 |
+
|
892 |
+
def _update_attention_mask(
|
893 |
+
self,
|
894 |
+
attention_mask: torch.Tensor,
|
895 |
+
input_tensor: torch.Tensor,
|
896 |
+
cache_position: torch.Tensor,
|
897 |
+
past_key_values: Cache,
|
898 |
+
output_attentions: bool,
|
899 |
+
):
|
900 |
+
# Flash Attention currently doesn't support static cache but Gemma2 work only with static cache.
|
901 |
+
# So we will pass in attention mask as is in any case, not only when ther's padding. Then we'll use its shape
|
902 |
+
# to cut out keys/values trailing 0 used in static cache. This workaround should be compile compatible
|
903 |
+
# as it doesn't cause dynamic control issues.
|
904 |
+
if self.config._attn_implementation == "flash_attention_2":
|
905 |
+
return attention_mask
|
906 |
+
|
907 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
908 |
+
min_dtype = torch.finfo(dtype).min
|
909 |
+
sequence_length = input_tensor.shape[1]
|
910 |
+
if isinstance(past_key_values, HybridCache):
|
911 |
+
target_length = past_key_values.get_max_length()
|
912 |
+
else:
|
913 |
+
target_length = attention_mask.shape[-1] if attention_mask is not None else input_tensor.shape[1]
|
914 |
+
|
915 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
916 |
+
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
917 |
+
attention_mask,
|
918 |
+
sequence_length=sequence_length,
|
919 |
+
target_length=target_length,
|
920 |
+
dtype=dtype,
|
921 |
+
device=device,
|
922 |
+
min_dtype=min_dtype,
|
923 |
+
cache_position=cache_position,
|
924 |
+
batch_size=input_tensor.shape[0],
|
925 |
+
)
|
926 |
+
return causal_mask
|
927 |
+
|
928 |
+
|
929 |
+
class Gemma2ForCausalLM(Gemma2PreTrainedModel):
|
930 |
+
_tied_weights_keys = ["lm_head.weight"]
|
931 |
+
|
932 |
+
def __init__(self, config):
|
933 |
+
super().__init__(config)
|
934 |
+
self.model = Gemma2Model(config)
|
935 |
+
self.vocab_size = config.vocab_size
|
936 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
937 |
+
|
938 |
+
# Initialize weights and apply final processing
|
939 |
+
self.post_init()
|
940 |
+
|
941 |
+
def get_input_embeddings(self):
|
942 |
+
return self.model.embed_tokens
|
943 |
+
|
944 |
+
def set_input_embeddings(self, value):
|
945 |
+
self.model.embed_tokens = value
|
946 |
+
|
947 |
+
def get_output_embeddings(self):
|
948 |
+
return self.lm_head
|
949 |
+
|
950 |
+
def set_output_embeddings(self, new_embeddings):
|
951 |
+
self.lm_head = new_embeddings
|
952 |
+
|
953 |
+
def set_decoder(self, decoder):
|
954 |
+
self.model = decoder
|
955 |
+
|
956 |
+
def get_decoder(self):
|
957 |
+
return self.model
|
958 |
+
|
959 |
+
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
|
960 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
961 |
+
def forward(
|
962 |
+
self,
|
963 |
+
input_ids: torch.LongTensor = None,
|
964 |
+
attention_mask: Optional[torch.Tensor] = None,
|
965 |
+
position_ids: Optional[torch.LongTensor] = None,
|
966 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
967 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
968 |
+
labels: Optional[torch.LongTensor] = None,
|
969 |
+
use_cache: Optional[bool] = None,
|
970 |
+
output_attentions: Optional[bool] = None,
|
971 |
+
output_hidden_states: Optional[bool] = None,
|
972 |
+
return_dict: Optional[bool] = None,
|
973 |
+
cache_position: Optional[torch.LongTensor] = None,
|
974 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
975 |
+
r"""
|
976 |
+
Args:
|
977 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
978 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
979 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
980 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
981 |
+
|
982 |
+
Returns:
|
983 |
+
|
984 |
+
Example:
|
985 |
+
|
986 |
+
```python
|
987 |
+
>>> from transformers import AutoTokenizer, GemmaForCausalLM
|
988 |
+
|
989 |
+
>>> model = GemmaForCausalLM.from_pretrained("google/gemma-2-9b")
|
990 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
|
991 |
+
|
992 |
+
>>> prompt = "What is your favorite condiment?"
|
993 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
994 |
+
|
995 |
+
>>> # Generate
|
996 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
997 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
998 |
+
"What is your favorite condiment?"
|
999 |
+
```"""
|
1000 |
+
if self.training and self.config._attn_implementation != "eager":
|
1001 |
+
logger.warning_once(
|
1002 |
+
"It is strongly recommended to train Gemma2 models with the `eager` attention implementation "
|
1003 |
+
f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`."
|
1004 |
+
)
|
1005 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1006 |
+
output_hidden_states = (
|
1007 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1008 |
+
)
|
1009 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1010 |
+
|
1011 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1012 |
+
outputs = self.model(
|
1013 |
+
input_ids=input_ids,
|
1014 |
+
attention_mask=attention_mask,
|
1015 |
+
position_ids=position_ids,
|
1016 |
+
past_key_values=past_key_values,
|
1017 |
+
inputs_embeds=inputs_embeds,
|
1018 |
+
use_cache=use_cache,
|
1019 |
+
output_attentions=output_attentions,
|
1020 |
+
output_hidden_states=output_hidden_states,
|
1021 |
+
return_dict=return_dict,
|
1022 |
+
cache_position=cache_position,
|
1023 |
+
)
|
1024 |
+
|
1025 |
+
hidden_states = outputs[0]
|
1026 |
+
logits = self.lm_head(hidden_states)
|
1027 |
+
if self.config.final_logit_softcapping is not None:
|
1028 |
+
logits = logits / self.config.final_logit_softcapping
|
1029 |
+
logits = torch.tanh(logits)
|
1030 |
+
logits = logits * self.config.final_logit_softcapping
|
1031 |
+
|
1032 |
+
logits = logits.float()
|
1033 |
+
loss = None
|
1034 |
+
if labels is not None:
|
1035 |
+
# Shift so that tokens < n predict n
|
1036 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1037 |
+
shift_labels = labels[..., 1:].contiguous()
|
1038 |
+
# Flatten the tokens
|
1039 |
+
loss_fct = CrossEntropyLoss()
|
1040 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1041 |
+
shift_labels = shift_labels.view(-1)
|
1042 |
+
# Enable model parallelism
|
1043 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1044 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1045 |
+
|
1046 |
+
if not return_dict:
|
1047 |
+
output = (logits,) + outputs[1:]
|
1048 |
+
return (loss,) + output if loss is not None else output
|
1049 |
+
|
1050 |
+
return CausalLMOutputWithPast(
|
1051 |
+
loss=loss,
|
1052 |
+
logits=logits,
|
1053 |
+
past_key_values=outputs.past_key_values,
|
1054 |
+
hidden_states=outputs.hidden_states,
|
1055 |
+
attentions=outputs.attentions,
|
1056 |
+
)
|
1057 |
+
|
1058 |
+
def prepare_inputs_for_generation(
|
1059 |
+
self,
|
1060 |
+
input_ids,
|
1061 |
+
past_key_values=None,
|
1062 |
+
attention_mask=None,
|
1063 |
+
inputs_embeds=None,
|
1064 |
+
cache_position=None,
|
1065 |
+
position_ids=None,
|
1066 |
+
use_cache=True,
|
1067 |
+
**kwargs,
|
1068 |
+
):
|
1069 |
+
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
1070 |
+
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
1071 |
+
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
1072 |
+
if past_key_values is not None:
|
1073 |
+
if inputs_embeds is not None: # Exception 1
|
1074 |
+
input_ids = input_ids[:, -cache_position.shape[0] :]
|
1075 |
+
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
1076 |
+
input_ids = input_ids[:, cache_position]
|
1077 |
+
|
1078 |
+
if attention_mask is not None and position_ids is None:
|
1079 |
+
# create position_ids on the fly for batch generation
|
1080 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1081 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1082 |
+
if past_key_values:
|
1083 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1084 |
+
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s
|
1085 |
+
# `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride
|
1086 |
+
# during the decoding. Here, simply using `.contiguous()` is not sufficient as in the
|
1087 |
+
# batch size = 1 case, `position_ids` is already contiguous but with varying stride
|
1088 |
+
# which retriggers a capture.
|
1089 |
+
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
|
1090 |
+
|
1091 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1092 |
+
if inputs_embeds is not None and cache_position[0] == 0:
|
1093 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1094 |
+
else:
|
1095 |
+
# The clone here is for the same reason as for `position_ids`.
|
1096 |
+
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format)}
|
1097 |
+
|
1098 |
+
if isinstance(past_key_values, HybridCache) and attention_mask.ndim == 2:
|
1099 |
+
if inputs_embeds is not None:
|
1100 |
+
batch_size, sequence_length = inputs_embeds.shape
|
1101 |
+
device = inputs_embeds.device
|
1102 |
+
else:
|
1103 |
+
batch_size, sequence_length = input_ids.shape
|
1104 |
+
device = input_ids.device
|
1105 |
+
|
1106 |
+
dtype = self.lm_head.weight.dtype
|
1107 |
+
min_dtype = torch.finfo(dtype).min
|
1108 |
+
|
1109 |
+
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
1110 |
+
attention_mask,
|
1111 |
+
sequence_length=sequence_length,
|
1112 |
+
target_length=past_key_values.get_max_length(),
|
1113 |
+
dtype=dtype,
|
1114 |
+
device=device,
|
1115 |
+
min_dtype=min_dtype,
|
1116 |
+
cache_position=cache_position,
|
1117 |
+
batch_size=batch_size,
|
1118 |
+
)
|
1119 |
+
|
1120 |
+
model_inputs.update(
|
1121 |
+
{
|
1122 |
+
"position_ids": position_ids,
|
1123 |
+
"cache_position": cache_position,
|
1124 |
+
"past_key_values": past_key_values,
|
1125 |
+
"use_cache": use_cache,
|
1126 |
+
"attention_mask": attention_mask,
|
1127 |
+
}
|
1128 |
+
)
|
1129 |
+
return model_inputs
|
1130 |
+
|
1131 |
+
|
1132 |
+
@add_start_docstrings(
|
1133 |
+
"""
|
1134 |
+
The Gemma2 Model transformer with a sequence classification head on top (linear layer).
|
1135 |
+
|
1136 |
+
[`Gemma2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1137 |
+
(e.g. GPT-2) do.
|
1138 |
+
|
1139 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1140 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1141 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1142 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1143 |
+
each row of the batch).
|
1144 |
+
""",
|
1145 |
+
GEMMA2_START_DOCSTRING,
|
1146 |
+
)
|
1147 |
+
class Gemma2ForSequenceClassification(Gemma2PreTrainedModel):
|
1148 |
+
def __init__(self, config):
|
1149 |
+
super().__init__(config)
|
1150 |
+
self.num_labels = config.num_labels
|
1151 |
+
self.model = Gemma2Model(config)
|
1152 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1153 |
+
|
1154 |
+
# Initialize weights and apply final processing
|
1155 |
+
self.post_init()
|
1156 |
+
|
1157 |
+
def get_input_embeddings(self):
|
1158 |
+
return self.model.embed_tokens
|
1159 |
+
|
1160 |
+
def set_input_embeddings(self, value):
|
1161 |
+
self.model.embed_tokens = value
|
1162 |
+
|
1163 |
+
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
|
1164 |
+
def forward(
|
1165 |
+
self,
|
1166 |
+
input_ids: torch.LongTensor = None,
|
1167 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1168 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1169 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1170 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1171 |
+
labels: Optional[torch.LongTensor] = None,
|
1172 |
+
use_cache: Optional[bool] = None,
|
1173 |
+
output_attentions: Optional[bool] = None,
|
1174 |
+
output_hidden_states: Optional[bool] = None,
|
1175 |
+
return_dict: Optional[bool] = None,
|
1176 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1177 |
+
r"""
|
1178 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1179 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1180 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1181 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1182 |
+
"""
|
1183 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1184 |
+
|
1185 |
+
transformer_outputs = self.model(
|
1186 |
+
input_ids,
|
1187 |
+
attention_mask=attention_mask,
|
1188 |
+
position_ids=position_ids,
|
1189 |
+
past_key_values=past_key_values,
|
1190 |
+
inputs_embeds=inputs_embeds,
|
1191 |
+
use_cache=use_cache,
|
1192 |
+
output_attentions=output_attentions,
|
1193 |
+
output_hidden_states=output_hidden_states,
|
1194 |
+
return_dict=return_dict,
|
1195 |
+
)
|
1196 |
+
hidden_states = transformer_outputs[0]
|
1197 |
+
logits = self.score(hidden_states)
|
1198 |
+
|
1199 |
+
if input_ids is not None:
|
1200 |
+
batch_size = input_ids.shape[0]
|
1201 |
+
else:
|
1202 |
+
batch_size = inputs_embeds.shape[0]
|
1203 |
+
|
1204 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1205 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1206 |
+
if self.config.pad_token_id is None:
|
1207 |
+
sequence_lengths = -1
|
1208 |
+
else:
|
1209 |
+
if input_ids is not None:
|
1210 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1211 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1212 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1213 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1214 |
+
else:
|
1215 |
+
sequence_lengths = -1
|
1216 |
+
|
1217 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1218 |
+
|
1219 |
+
loss = None
|
1220 |
+
if labels is not None:
|
1221 |
+
labels = labels.to(logits.device)
|
1222 |
+
if self.config.problem_type is None:
|
1223 |
+
if self.num_labels == 1:
|
1224 |
+
self.config.problem_type = "regression"
|
1225 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1226 |
+
self.config.problem_type = "single_label_classification"
|
1227 |
+
else:
|
1228 |
+
self.config.problem_type = "multi_label_classification"
|
1229 |
+
|
1230 |
+
if self.config.problem_type == "regression":
|
1231 |
+
loss_fct = MSELoss()
|
1232 |
+
if self.num_labels == 1:
|
1233 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1234 |
+
else:
|
1235 |
+
loss = loss_fct(pooled_logits, labels)
|
1236 |
+
elif self.config.problem_type == "single_label_classification":
|
1237 |
+
loss_fct = CrossEntropyLoss()
|
1238 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1239 |
+
elif self.config.problem_type == "multi_label_classification":
|
1240 |
+
loss_fct = BCEWithLogitsLoss()
|
1241 |
+
loss = loss_fct(pooled_logits, labels)
|
1242 |
+
if not return_dict:
|
1243 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1244 |
+
return ((loss,) + output) if loss is not None else output
|
1245 |
+
|
1246 |
+
return SequenceClassifierOutputWithPast(
|
1247 |
+
loss=loss,
|
1248 |
+
logits=pooled_logits,
|
1249 |
+
past_key_values=transformer_outputs.past_key_values,
|
1250 |
+
hidden_states=transformer_outputs.hidden_states,
|
1251 |
+
attentions=transformer_outputs.attentions,
|
1252 |
+
)
|
1253 |
+
|
1254 |
+
|
1255 |
+
@add_start_docstrings(
|
1256 |
+
"""
|
1257 |
+
The Gemma2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
|
1258 |
+
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
1259 |
+
""",
|
1260 |
+
GEMMA2_START_DOCSTRING,
|
1261 |
+
)
|
1262 |
+
class Gemma2ForTokenClassification(Gemma2PreTrainedModel):
|
1263 |
+
def __init__(self, config):
|
1264 |
+
super().__init__(config)
|
1265 |
+
self.num_labels = config.num_labels
|
1266 |
+
self.model = Gemma2Model(config)
|
1267 |
+
if getattr(config, "classifier_dropout", None) is not None:
|
1268 |
+
classifier_dropout = config.classifier_dropout
|
1269 |
+
elif getattr(config, "hidden_dropout", None) is not None:
|
1270 |
+
classifier_dropout = config.hidden_dropout
|
1271 |
+
else:
|
1272 |
+
classifier_dropout = 0.1
|
1273 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1274 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
1275 |
+
|
1276 |
+
# Initialize weights and apply final processing
|
1277 |
+
self.post_init()
|
1278 |
+
|
1279 |
+
def get_input_embeddings(self):
|
1280 |
+
return self.model.embed_tokens
|
1281 |
+
|
1282 |
+
def set_input_embeddings(self, value):
|
1283 |
+
self.model.embed_tokens = value
|
1284 |
+
|
1285 |
+
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
|
1286 |
+
def forward(
|
1287 |
+
self,
|
1288 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1289 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1290 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1291 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1292 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1293 |
+
labels: Optional[torch.LongTensor] = None,
|
1294 |
+
use_cache: Optional[bool] = None,
|
1295 |
+
output_attentions: Optional[bool] = None,
|
1296 |
+
output_hidden_states: Optional[bool] = None,
|
1297 |
+
return_dict: Optional[bool] = None,
|
1298 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1299 |
+
r"""
|
1300 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1301 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1302 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1303 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1304 |
+
"""
|
1305 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1306 |
+
|
1307 |
+
outputs = self.model(
|
1308 |
+
input_ids,
|
1309 |
+
attention_mask=attention_mask,
|
1310 |
+
position_ids=position_ids,
|
1311 |
+
past_key_values=past_key_values,
|
1312 |
+
inputs_embeds=inputs_embeds,
|
1313 |
+
use_cache=use_cache,
|
1314 |
+
output_attentions=output_attentions,
|
1315 |
+
output_hidden_states=output_hidden_states,
|
1316 |
+
return_dict=return_dict,
|
1317 |
+
)
|
1318 |
+
sequence_output = outputs[0]
|
1319 |
+
sequence_output = self.dropout(sequence_output)
|
1320 |
+
logits = self.score(sequence_output)
|
1321 |
+
|
1322 |
+
loss = None
|
1323 |
+
if labels is not None:
|
1324 |
+
loss_fct = CrossEntropyLoss()
|
1325 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1326 |
+
|
1327 |
+
if not return_dict:
|
1328 |
+
output = (logits,) + outputs[2:]
|
1329 |
+
return ((loss,) + output) if loss is not None else output
|
1330 |
+
|
1331 |
+
return TokenClassifierOutput(
|
1332 |
+
loss=loss,
|
1333 |
+
logits=logits,
|
1334 |
+
hidden_states=outputs.hidden_states,
|
1335 |
+
attentions=outputs.attentions,
|
1336 |
+
)
|
1337 |
+
|
1338 |
+
def get_detailed_instruct(task_description: str, query: str) -> str:
|
1339 |
+
return f'Instruct: {task_description}\nQuery: {query}'
|
1340 |
+
|
1341 |
+
class CodeXEmbedModel2B(PreTrainedModel):
|
1342 |
+
config_class = CodeXEmbedConfig
|
1343 |
+
base_model_prefix = 'model'
|
1344 |
+
def __init__(self, config, **kwargs):
|
1345 |
+
super().__init__(config)
|
1346 |
+
self.model = Gemma2Model.from_pretrained(config._name_or_path, trust_remote_code=True, is_causal=False, device_map="auto")
|
1347 |
+
self.tokenizer = AutoTokenizer.from_pretrained(config._name_or_path, trust_remote_code=True, device_map="auto")
|
1348 |
+
|
1349 |
+
if not self.tokenizer.pad_token:
|
1350 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
1351 |
+
self.tokenizer.padding_side = 'right'
|
1352 |
+
|
1353 |
+
def last_token_pool(self, model_output, attention_mask):
|
1354 |
+
last_hidden_states = model_output.last_hidden_state
|
1355 |
+
sequence_lengths = attention_mask.sum(dim=1) - 1
|
1356 |
+
batch_size = last_hidden_states.shape[0]
|
1357 |
+
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
|
1358 |
+
|
1359 |
+
def encode_text(self, texts: List[str], max_length: int) -> np.ndarray:
|
1360 |
+
logging.info(f"Encoding {len(texts)} texts...")
|
1361 |
+
|
1362 |
+
# Tokenize all texts
|
1363 |
+
encoded_input = self.tokenizer(
|
1364 |
+
texts,
|
1365 |
+
padding=True,
|
1366 |
+
truncation=True,
|
1367 |
+
max_length=max_length,
|
1368 |
+
return_tensors="pt"
|
1369 |
+
).to('cuda')
|
1370 |
+
|
1371 |
+
# Generate embeddings
|
1372 |
+
with torch.no_grad():
|
1373 |
+
model_output = self.model(**encoded_input)
|
1374 |
+
embeddings = self.last_token_pool(model_output, encoded_input['attention_mask'])
|
1375 |
+
|
1376 |
+
if embeddings is None:
|
1377 |
+
logging.error("Embeddings are None.")
|
1378 |
+
else:
|
1379 |
+
logging.info(f"Encoded {len(embeddings)} embeddings.")
|
1380 |
+
|
1381 |
+
return embeddings.cpu()
|
1382 |
+
|
1383 |
+
def encode_queries(self, queries: List[str], max_length: int, instruction: str, **kwargs) -> np.ndarray:
|
1384 |
+
all_queries = [get_detailed_instruct(instruction, query) for query in queries]
|
1385 |
+
return self.encode_text(all_queries, max_length)
|
1386 |
+
|
1387 |
+
def encode_corpus(self, corpus: List[str], max_length: int,
|
1388 |
+
**kwargs) -> np.ndarray:
|
1389 |
+
return self.encode_text(corpus, max_length)
|
1390 |
+
|
1391 |
+
## AutoModel Register
|
1392 |
+
AutoModel.register(CodeXEmbedConfig, CodeXEmbedModel2B)
|
1393 |
+
|
1394 |
+
## Register for auto class
|
1395 |
+
CodeXEmbedModel2B.register_for_auto_class("AutoModel")
|
special_tokens_map.json
CHANGED
@@ -1,3 +1,34 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<start_of_turn>",
|
4 |
+
"<end_of_turn>"
|
5 |
+
],
|
6 |
+
"bos_token": {
|
7 |
+
"content": "<bos>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"eos_token": {
|
14 |
+
"content": "<eos>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
},
|
20 |
+
"pad_token": {
|
21 |
+
"content": "<pad>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false
|
26 |
+
},
|
27 |
+
"unk_token": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false
|
33 |
+
}
|
34 |
+
}
|
tokenizer_config.json
CHANGED
@@ -1,3 +1,2013 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": true,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<pad>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<eos>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "<bos>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"3": {
|
30 |
+
"content": "<unk>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"4": {
|
38 |
+
"content": "<mask>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": false
|
44 |
+
},
|
45 |
+
"5": {
|
46 |
+
"content": "<2mass>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": false
|
52 |
+
},
|
53 |
+
"6": {
|
54 |
+
"content": "[@BOS@]",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": false
|
60 |
+
},
|
61 |
+
"7": {
|
62 |
+
"content": "<unused0>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": false
|
68 |
+
},
|
69 |
+
"8": {
|
70 |
+
"content": "<unused1>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": false
|
76 |
+
},
|
77 |
+
"9": {
|
78 |
+
"content": "<unused2>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": false
|
84 |
+
},
|
85 |
+
"10": {
|
86 |
+
"content": "<unused3>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": false
|
92 |
+
},
|
93 |
+
"11": {
|
94 |
+
"content": "<unused4>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": false
|
100 |
+
},
|
101 |
+
"12": {
|
102 |
+
"content": "<unused5>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": false
|
108 |
+
},
|
109 |
+
"13": {
|
110 |
+
"content": "<unused6>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": false
|
116 |
+
},
|
117 |
+
"14": {
|
118 |
+
"content": "<unused7>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"15": {
|
126 |
+
"content": "<unused8>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"16": {
|
134 |
+
"content": "<unused9>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"17": {
|
142 |
+
"content": "<unused10>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"18": {
|
150 |
+
"content": "<unused11>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"19": {
|
158 |
+
"content": "<unused12>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"20": {
|
166 |
+
"content": "<unused13>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"21": {
|
174 |
+
"content": "<unused14>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"22": {
|
182 |
+
"content": "<unused15>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"23": {
|
190 |
+
"content": "<unused16>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"24": {
|
198 |
+
"content": "<unused17>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"25": {
|
206 |
+
"content": "<unused18>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
},
|
213 |
+
"26": {
|
214 |
+
"content": "<unused19>",
|
215 |
+
"lstrip": false,
|
216 |
+
"normalized": false,
|
217 |
+
"rstrip": false,
|
218 |
+
"single_word": false,
|
219 |
+
"special": false
|
220 |
+
},
|
221 |
+
"27": {
|
222 |
+
"content": "<unused20>",
|
223 |
+
"lstrip": false,
|
224 |
+
"normalized": false,
|
225 |
+
"rstrip": false,
|
226 |
+
"single_word": false,
|
227 |
+
"special": false
|
228 |
+
},
|
229 |
+
"28": {
|
230 |
+
"content": "<unused21>",
|
231 |
+
"lstrip": false,
|
232 |
+
"normalized": false,
|
233 |
+
"rstrip": false,
|
234 |
+
"single_word": false,
|
235 |
+
"special": false
|
236 |
+
},
|
237 |
+
"29": {
|
238 |
+
"content": "<unused22>",
|
239 |
+
"lstrip": false,
|
240 |
+
"normalized": false,
|
241 |
+
"rstrip": false,
|
242 |
+
"single_word": false,
|
243 |
+
"special": false
|
244 |
+
},
|
245 |
+
"30": {
|
246 |
+
"content": "<unused23>",
|
247 |
+
"lstrip": false,
|
248 |
+
"normalized": false,
|
249 |
+
"rstrip": false,
|
250 |
+
"single_word": false,
|
251 |
+
"special": false
|
252 |
+
},
|
253 |
+
"31": {
|
254 |
+
"content": "<unused24>",
|
255 |
+
"lstrip": false,
|
256 |
+
"normalized": false,
|
257 |
+
"rstrip": false,
|
258 |
+
"single_word": false,
|
259 |
+
"special": false
|
260 |
+
},
|
261 |
+
"32": {
|
262 |
+
"content": "<unused25>",
|
263 |
+
"lstrip": false,
|
264 |
+
"normalized": false,
|
265 |
+
"rstrip": false,
|
266 |
+
"single_word": false,
|
267 |
+
"special": false
|
268 |
+
},
|
269 |
+
"33": {
|
270 |
+
"content": "<unused26>",
|
271 |
+
"lstrip": false,
|
272 |
+
"normalized": false,
|
273 |
+
"rstrip": false,
|
274 |
+
"single_word": false,
|
275 |
+
"special": false
|
276 |
+
},
|
277 |
+
"34": {
|
278 |
+
"content": "<unused27>",
|
279 |
+
"lstrip": false,
|
280 |
+
"normalized": false,
|
281 |
+
"rstrip": false,
|
282 |
+
"single_word": false,
|
283 |
+
"special": false
|
284 |
+
},
|
285 |
+
"35": {
|
286 |
+
"content": "<unused28>",
|
287 |
+
"lstrip": false,
|
288 |
+
"normalized": false,
|
289 |
+
"rstrip": false,
|
290 |
+
"single_word": false,
|
291 |
+
"special": false
|
292 |
+
},
|
293 |
+
"36": {
|
294 |
+
"content": "<unused29>",
|
295 |
+
"lstrip": false,
|
296 |
+
"normalized": false,
|
297 |
+
"rstrip": false,
|
298 |
+
"single_word": false,
|
299 |
+
"special": false
|
300 |
+
},
|
301 |
+
"37": {
|
302 |
+
"content": "<unused30>",
|
303 |
+
"lstrip": false,
|
304 |
+
"normalized": false,
|
305 |
+
"rstrip": false,
|
306 |
+
"single_word": false,
|
307 |
+
"special": false
|
308 |
+
},
|
309 |
+
"38": {
|
310 |
+
"content": "<unused31>",
|
311 |
+
"lstrip": false,
|
312 |
+
"normalized": false,
|
313 |
+
"rstrip": false,
|
314 |
+
"single_word": false,
|
315 |
+
"special": false
|
316 |
+
},
|
317 |
+
"39": {
|
318 |
+
"content": "<unused32>",
|
319 |
+
"lstrip": false,
|
320 |
+
"normalized": false,
|
321 |
+
"rstrip": false,
|
322 |
+
"single_word": false,
|
323 |
+
"special": false
|
324 |
+
},
|
325 |
+
"40": {
|
326 |
+
"content": "<unused33>",
|
327 |
+
"lstrip": false,
|
328 |
+
"normalized": false,
|
329 |
+
"rstrip": false,
|
330 |
+
"single_word": false,
|
331 |
+
"special": false
|
332 |
+
},
|
333 |
+
"41": {
|
334 |
+
"content": "<unused34>",
|
335 |
+
"lstrip": false,
|
336 |
+
"normalized": false,
|
337 |
+
"rstrip": false,
|
338 |
+
"single_word": false,
|
339 |
+
"special": false
|
340 |
+
},
|
341 |
+
"42": {
|
342 |
+
"content": "<unused35>",
|
343 |
+
"lstrip": false,
|
344 |
+
"normalized": false,
|
345 |
+
"rstrip": false,
|
346 |
+
"single_word": false,
|
347 |
+
"special": false
|
348 |
+
},
|
349 |
+
"43": {
|
350 |
+
"content": "<unused36>",
|
351 |
+
"lstrip": false,
|
352 |
+
"normalized": false,
|
353 |
+
"rstrip": false,
|
354 |
+
"single_word": false,
|
355 |
+
"special": false
|
356 |
+
},
|
357 |
+
"44": {
|
358 |
+
"content": "<unused37>",
|
359 |
+
"lstrip": false,
|
360 |
+
"normalized": false,
|
361 |
+
"rstrip": false,
|
362 |
+
"single_word": false,
|
363 |
+
"special": false
|
364 |
+
},
|
365 |
+
"45": {
|
366 |
+
"content": "<unused38>",
|
367 |
+
"lstrip": false,
|
368 |
+
"normalized": false,
|
369 |
+
"rstrip": false,
|
370 |
+
"single_word": false,
|
371 |
+
"special": false
|
372 |
+
},
|
373 |
+
"46": {
|
374 |
+
"content": "<unused39>",
|
375 |
+
"lstrip": false,
|
376 |
+
"normalized": false,
|
377 |
+
"rstrip": false,
|
378 |
+
"single_word": false,
|
379 |
+
"special": false
|
380 |
+
},
|
381 |
+
"47": {
|
382 |
+
"content": "<unused40>",
|
383 |
+
"lstrip": false,
|
384 |
+
"normalized": false,
|
385 |
+
"rstrip": false,
|
386 |
+
"single_word": false,
|
387 |
+
"special": false
|
388 |
+
},
|
389 |
+
"48": {
|
390 |
+
"content": "<unused41>",
|
391 |
+
"lstrip": false,
|
392 |
+
"normalized": false,
|
393 |
+
"rstrip": false,
|
394 |
+
"single_word": false,
|
395 |
+
"special": false
|
396 |
+
},
|
397 |
+
"49": {
|
398 |
+
"content": "<unused42>",
|
399 |
+
"lstrip": false,
|
400 |
+
"normalized": false,
|
401 |
+
"rstrip": false,
|
402 |
+
"single_word": false,
|
403 |
+
"special": false
|
404 |
+
},
|
405 |
+
"50": {
|
406 |
+
"content": "<unused43>",
|
407 |
+
"lstrip": false,
|
408 |
+
"normalized": false,
|
409 |
+
"rstrip": false,
|
410 |
+
"single_word": false,
|
411 |
+
"special": false
|
412 |
+
},
|
413 |
+
"51": {
|
414 |
+
"content": "<unused44>",
|
415 |
+
"lstrip": false,
|
416 |
+
"normalized": false,
|
417 |
+
"rstrip": false,
|
418 |
+
"single_word": false,
|
419 |
+
"special": false
|
420 |
+
},
|
421 |
+
"52": {
|
422 |
+
"content": "<unused45>",
|
423 |
+
"lstrip": false,
|
424 |
+
"normalized": false,
|
425 |
+
"rstrip": false,
|
426 |
+
"single_word": false,
|
427 |
+
"special": false
|
428 |
+
},
|
429 |
+
"53": {
|
430 |
+
"content": "<unused46>",
|
431 |
+
"lstrip": false,
|
432 |
+
"normalized": false,
|
433 |
+
"rstrip": false,
|
434 |
+
"single_word": false,
|
435 |
+
"special": false
|
436 |
+
},
|
437 |
+
"54": {
|
438 |
+
"content": "<unused47>",
|
439 |
+
"lstrip": false,
|
440 |
+
"normalized": false,
|
441 |
+
"rstrip": false,
|
442 |
+
"single_word": false,
|
443 |
+
"special": false
|
444 |
+
},
|
445 |
+
"55": {
|
446 |
+
"content": "<unused48>",
|
447 |
+
"lstrip": false,
|
448 |
+
"normalized": false,
|
449 |
+
"rstrip": false,
|
450 |
+
"single_word": false,
|
451 |
+
"special": false
|
452 |
+
},
|
453 |
+
"56": {
|
454 |
+
"content": "<unused49>",
|
455 |
+
"lstrip": false,
|
456 |
+
"normalized": false,
|
457 |
+
"rstrip": false,
|
458 |
+
"single_word": false,
|
459 |
+
"special": false
|
460 |
+
},
|
461 |
+
"57": {
|
462 |
+
"content": "<unused50>",
|
463 |
+
"lstrip": false,
|
464 |
+
"normalized": false,
|
465 |
+
"rstrip": false,
|
466 |
+
"single_word": false,
|
467 |
+
"special": false
|
468 |
+
},
|
469 |
+
"58": {
|
470 |
+
"content": "<unused51>",
|
471 |
+
"lstrip": false,
|
472 |
+
"normalized": false,
|
473 |
+
"rstrip": false,
|
474 |
+
"single_word": false,
|
475 |
+
"special": false
|
476 |
+
},
|
477 |
+
"59": {
|
478 |
+
"content": "<unused52>",
|
479 |
+
"lstrip": false,
|
480 |
+
"normalized": false,
|
481 |
+
"rstrip": false,
|
482 |
+
"single_word": false,
|
483 |
+
"special": false
|
484 |
+
},
|
485 |
+
"60": {
|
486 |
+
"content": "<unused53>",
|
487 |
+
"lstrip": false,
|
488 |
+
"normalized": false,
|
489 |
+
"rstrip": false,
|
490 |
+
"single_word": false,
|
491 |
+
"special": false
|
492 |
+
},
|
493 |
+
"61": {
|
494 |
+
"content": "<unused54>",
|
495 |
+
"lstrip": false,
|
496 |
+
"normalized": false,
|
497 |
+
"rstrip": false,
|
498 |
+
"single_word": false,
|
499 |
+
"special": false
|
500 |
+
},
|
501 |
+
"62": {
|
502 |
+
"content": "<unused55>",
|
503 |
+
"lstrip": false,
|
504 |
+
"normalized": false,
|
505 |
+
"rstrip": false,
|
506 |
+
"single_word": false,
|
507 |
+
"special": false
|
508 |
+
},
|
509 |
+
"63": {
|
510 |
+
"content": "<unused56>",
|
511 |
+
"lstrip": false,
|
512 |
+
"normalized": false,
|
513 |
+
"rstrip": false,
|
514 |
+
"single_word": false,
|
515 |
+
"special": false
|
516 |
+
},
|
517 |
+
"64": {
|
518 |
+
"content": "<unused57>",
|
519 |
+
"lstrip": false,
|
520 |
+
"normalized": false,
|
521 |
+
"rstrip": false,
|
522 |
+
"single_word": false,
|
523 |
+
"special": false
|
524 |
+
},
|
525 |
+
"65": {
|
526 |
+
"content": "<unused58>",
|
527 |
+
"lstrip": false,
|
528 |
+
"normalized": false,
|
529 |
+
"rstrip": false,
|
530 |
+
"single_word": false,
|
531 |
+
"special": false
|
532 |
+
},
|
533 |
+
"66": {
|
534 |
+
"content": "<unused59>",
|
535 |
+
"lstrip": false,
|
536 |
+
"normalized": false,
|
537 |
+
"rstrip": false,
|
538 |
+
"single_word": false,
|
539 |
+
"special": false
|
540 |
+
},
|
541 |
+
"67": {
|
542 |
+
"content": "<unused60>",
|
543 |
+
"lstrip": false,
|
544 |
+
"normalized": false,
|
545 |
+
"rstrip": false,
|
546 |
+
"single_word": false,
|
547 |
+
"special": false
|
548 |
+
},
|
549 |
+
"68": {
|
550 |
+
"content": "<unused61>",
|
551 |
+
"lstrip": false,
|
552 |
+
"normalized": false,
|
553 |
+
"rstrip": false,
|
554 |
+
"single_word": false,
|
555 |
+
"special": false
|
556 |
+
},
|
557 |
+
"69": {
|
558 |
+
"content": "<unused62>",
|
559 |
+
"lstrip": false,
|
560 |
+
"normalized": false,
|
561 |
+
"rstrip": false,
|
562 |
+
"single_word": false,
|
563 |
+
"special": false
|
564 |
+
},
|
565 |
+
"70": {
|
566 |
+
"content": "<unused63>",
|
567 |
+
"lstrip": false,
|
568 |
+
"normalized": false,
|
569 |
+
"rstrip": false,
|
570 |
+
"single_word": false,
|
571 |
+
"special": false
|
572 |
+
},
|
573 |
+
"71": {
|
574 |
+
"content": "<unused64>",
|
575 |
+
"lstrip": false,
|
576 |
+
"normalized": false,
|
577 |
+
"rstrip": false,
|
578 |
+
"single_word": false,
|
579 |
+
"special": false
|
580 |
+
},
|
581 |
+
"72": {
|
582 |
+
"content": "<unused65>",
|
583 |
+
"lstrip": false,
|
584 |
+
"normalized": false,
|
585 |
+
"rstrip": false,
|
586 |
+
"single_word": false,
|
587 |
+
"special": false
|
588 |
+
},
|
589 |
+
"73": {
|
590 |
+
"content": "<unused66>",
|
591 |
+
"lstrip": false,
|
592 |
+
"normalized": false,
|
593 |
+
"rstrip": false,
|
594 |
+
"single_word": false,
|
595 |
+
"special": false
|
596 |
+
},
|
597 |
+
"74": {
|
598 |
+
"content": "<unused67>",
|
599 |
+
"lstrip": false,
|
600 |
+
"normalized": false,
|
601 |
+
"rstrip": false,
|
602 |
+
"single_word": false,
|
603 |
+
"special": false
|
604 |
+
},
|
605 |
+
"75": {
|
606 |
+
"content": "<unused68>",
|
607 |
+
"lstrip": false,
|
608 |
+
"normalized": false,
|
609 |
+
"rstrip": false,
|
610 |
+
"single_word": false,
|
611 |
+
"special": false
|
612 |
+
},
|
613 |
+
"76": {
|
614 |
+
"content": "<unused69>",
|
615 |
+
"lstrip": false,
|
616 |
+
"normalized": false,
|
617 |
+
"rstrip": false,
|
618 |
+
"single_word": false,
|
619 |
+
"special": false
|
620 |
+
},
|
621 |
+
"77": {
|
622 |
+
"content": "<unused70>",
|
623 |
+
"lstrip": false,
|
624 |
+
"normalized": false,
|
625 |
+
"rstrip": false,
|
626 |
+
"single_word": false,
|
627 |
+
"special": false
|
628 |
+
},
|
629 |
+
"78": {
|
630 |
+
"content": "<unused71>",
|
631 |
+
"lstrip": false,
|
632 |
+
"normalized": false,
|
633 |
+
"rstrip": false,
|
634 |
+
"single_word": false,
|
635 |
+
"special": false
|
636 |
+
},
|
637 |
+
"79": {
|
638 |
+
"content": "<unused72>",
|
639 |
+
"lstrip": false,
|
640 |
+
"normalized": false,
|
641 |
+
"rstrip": false,
|
642 |
+
"single_word": false,
|
643 |
+
"special": false
|
644 |
+
},
|
645 |
+
"80": {
|
646 |
+
"content": "<unused73>",
|
647 |
+
"lstrip": false,
|
648 |
+
"normalized": false,
|
649 |
+
"rstrip": false,
|
650 |
+
"single_word": false,
|
651 |
+
"special": false
|
652 |
+
},
|
653 |
+
"81": {
|
654 |
+
"content": "<unused74>",
|
655 |
+
"lstrip": false,
|
656 |
+
"normalized": false,
|
657 |
+
"rstrip": false,
|
658 |
+
"single_word": false,
|
659 |
+
"special": false
|
660 |
+
},
|
661 |
+
"82": {
|
662 |
+
"content": "<unused75>",
|
663 |
+
"lstrip": false,
|
664 |
+
"normalized": false,
|
665 |
+
"rstrip": false,
|
666 |
+
"single_word": false,
|
667 |
+
"special": false
|
668 |
+
},
|
669 |
+
"83": {
|
670 |
+
"content": "<unused76>",
|
671 |
+
"lstrip": false,
|
672 |
+
"normalized": false,
|
673 |
+
"rstrip": false,
|
674 |
+
"single_word": false,
|
675 |
+
"special": false
|
676 |
+
},
|
677 |
+
"84": {
|
678 |
+
"content": "<unused77>",
|
679 |
+
"lstrip": false,
|
680 |
+
"normalized": false,
|
681 |
+
"rstrip": false,
|
682 |
+
"single_word": false,
|
683 |
+
"special": false
|
684 |
+
},
|
685 |
+
"85": {
|
686 |
+
"content": "<unused78>",
|
687 |
+
"lstrip": false,
|
688 |
+
"normalized": false,
|
689 |
+
"rstrip": false,
|
690 |
+
"single_word": false,
|
691 |
+
"special": false
|
692 |
+
},
|
693 |
+
"86": {
|
694 |
+
"content": "<unused79>",
|
695 |
+
"lstrip": false,
|
696 |
+
"normalized": false,
|
697 |
+
"rstrip": false,
|
698 |
+
"single_word": false,
|
699 |
+
"special": false
|
700 |
+
},
|
701 |
+
"87": {
|
702 |
+
"content": "<unused80>",
|
703 |
+
"lstrip": false,
|
704 |
+
"normalized": false,
|
705 |
+
"rstrip": false,
|
706 |
+
"single_word": false,
|
707 |
+
"special": false
|
708 |
+
},
|
709 |
+
"88": {
|
710 |
+
"content": "<unused81>",
|
711 |
+
"lstrip": false,
|
712 |
+
"normalized": false,
|
713 |
+
"rstrip": false,
|
714 |
+
"single_word": false,
|
715 |
+
"special": false
|
716 |
+
},
|
717 |
+
"89": {
|
718 |
+
"content": "<unused82>",
|
719 |
+
"lstrip": false,
|
720 |
+
"normalized": false,
|
721 |
+
"rstrip": false,
|
722 |
+
"single_word": false,
|
723 |
+
"special": false
|
724 |
+
},
|
725 |
+
"90": {
|
726 |
+
"content": "<unused83>",
|
727 |
+
"lstrip": false,
|
728 |
+
"normalized": false,
|
729 |
+
"rstrip": false,
|
730 |
+
"single_word": false,
|
731 |
+
"special": false
|
732 |
+
},
|
733 |
+
"91": {
|
734 |
+
"content": "<unused84>",
|
735 |
+
"lstrip": false,
|
736 |
+
"normalized": false,
|
737 |
+
"rstrip": false,
|
738 |
+
"single_word": false,
|
739 |
+
"special": false
|
740 |
+
},
|
741 |
+
"92": {
|
742 |
+
"content": "<unused85>",
|
743 |
+
"lstrip": false,
|
744 |
+
"normalized": false,
|
745 |
+
"rstrip": false,
|
746 |
+
"single_word": false,
|
747 |
+
"special": false
|
748 |
+
},
|
749 |
+
"93": {
|
750 |
+
"content": "<unused86>",
|
751 |
+
"lstrip": false,
|
752 |
+
"normalized": false,
|
753 |
+
"rstrip": false,
|
754 |
+
"single_word": false,
|
755 |
+
"special": false
|
756 |
+
},
|
757 |
+
"94": {
|
758 |
+
"content": "<unused87>",
|
759 |
+
"lstrip": false,
|
760 |
+
"normalized": false,
|
761 |
+
"rstrip": false,
|
762 |
+
"single_word": false,
|
763 |
+
"special": false
|
764 |
+
},
|
765 |
+
"95": {
|
766 |
+
"content": "<unused88>",
|
767 |
+
"lstrip": false,
|
768 |
+
"normalized": false,
|
769 |
+
"rstrip": false,
|
770 |
+
"single_word": false,
|
771 |
+
"special": false
|
772 |
+
},
|
773 |
+
"96": {
|
774 |
+
"content": "<unused89>",
|
775 |
+
"lstrip": false,
|
776 |
+
"normalized": false,
|
777 |
+
"rstrip": false,
|
778 |
+
"single_word": false,
|
779 |
+
"special": false
|
780 |
+
},
|
781 |
+
"97": {
|
782 |
+
"content": "<unused90>",
|
783 |
+
"lstrip": false,
|
784 |
+
"normalized": false,
|
785 |
+
"rstrip": false,
|
786 |
+
"single_word": false,
|
787 |
+
"special": false
|
788 |
+
},
|
789 |
+
"98": {
|
790 |
+
"content": "<unused91>",
|
791 |
+
"lstrip": false,
|
792 |
+
"normalized": false,
|
793 |
+
"rstrip": false,
|
794 |
+
"single_word": false,
|
795 |
+
"special": false
|
796 |
+
},
|
797 |
+
"99": {
|
798 |
+
"content": "<unused92>",
|
799 |
+
"lstrip": false,
|
800 |
+
"normalized": false,
|
801 |
+
"rstrip": false,
|
802 |
+
"single_word": false,
|
803 |
+
"special": false
|
804 |
+
},
|
805 |
+
"100": {
|
806 |
+
"content": "<unused93>",
|
807 |
+
"lstrip": false,
|
808 |
+
"normalized": false,
|
809 |
+
"rstrip": false,
|
810 |
+
"single_word": false,
|
811 |
+
"special": false
|
812 |
+
},
|
813 |
+
"101": {
|
814 |
+
"content": "<unused94>",
|
815 |
+
"lstrip": false,
|
816 |
+
"normalized": false,
|
817 |
+
"rstrip": false,
|
818 |
+
"single_word": false,
|
819 |
+
"special": false
|
820 |
+
},
|
821 |
+
"102": {
|
822 |
+
"content": "<unused95>",
|
823 |
+
"lstrip": false,
|
824 |
+
"normalized": false,
|
825 |
+
"rstrip": false,
|
826 |
+
"single_word": false,
|
827 |
+
"special": false
|
828 |
+
},
|
829 |
+
"103": {
|
830 |
+
"content": "<unused96>",
|
831 |
+
"lstrip": false,
|
832 |
+
"normalized": false,
|
833 |
+
"rstrip": false,
|
834 |
+
"single_word": false,
|
835 |
+
"special": false
|
836 |
+
},
|
837 |
+
"104": {
|
838 |
+
"content": "<unused97>",
|
839 |
+
"lstrip": false,
|
840 |
+
"normalized": false,
|
841 |
+
"rstrip": false,
|
842 |
+
"single_word": false,
|
843 |
+
"special": false
|
844 |
+
},
|
845 |
+
"105": {
|
846 |
+
"content": "<unused98>",
|
847 |
+
"lstrip": false,
|
848 |
+
"normalized": false,
|
849 |
+
"rstrip": false,
|
850 |
+
"single_word": false,
|
851 |
+
"special": false
|
852 |
+
},
|
853 |
+
"106": {
|
854 |
+
"content": "<start_of_turn>",
|
855 |
+
"lstrip": false,
|
856 |
+
"normalized": false,
|
857 |
+
"rstrip": false,
|
858 |
+
"single_word": false,
|
859 |
+
"special": true
|
860 |
+
},
|
861 |
+
"107": {
|
862 |
+
"content": "<end_of_turn>",
|
863 |
+
"lstrip": false,
|
864 |
+
"normalized": false,
|
865 |
+
"rstrip": false,
|
866 |
+
"single_word": false,
|
867 |
+
"special": true
|
868 |
+
},
|
869 |
+
"108": {
|
870 |
+
"content": "\n",
|
871 |
+
"lstrip": false,
|
872 |
+
"normalized": false,
|
873 |
+
"rstrip": false,
|
874 |
+
"single_word": false,
|
875 |
+
"special": false
|
876 |
+
},
|
877 |
+
"109": {
|
878 |
+
"content": "\n\n",
|
879 |
+
"lstrip": false,
|
880 |
+
"normalized": false,
|
881 |
+
"rstrip": false,
|
882 |
+
"single_word": false,
|
883 |
+
"special": false
|
884 |
+
},
|
885 |
+
"110": {
|
886 |
+
"content": "\n\n\n",
|
887 |
+
"lstrip": false,
|
888 |
+
"normalized": false,
|
889 |
+
"rstrip": false,
|
890 |
+
"single_word": false,
|
891 |
+
"special": false
|
892 |
+
},
|
893 |
+
"111": {
|
894 |
+
"content": "\n\n\n\n",
|
895 |
+
"lstrip": false,
|
896 |
+
"normalized": false,
|
897 |
+
"rstrip": false,
|
898 |
+
"single_word": false,
|
899 |
+
"special": false
|
900 |
+
},
|
901 |
+
"112": {
|
902 |
+
"content": "\n\n\n\n\n",
|
903 |
+
"lstrip": false,
|
904 |
+
"normalized": false,
|
905 |
+
"rstrip": false,
|
906 |
+
"single_word": false,
|
907 |
+
"special": false
|
908 |
+
},
|
909 |
+
"113": {
|
910 |
+
"content": "\n\n\n\n\n\n",
|
911 |
+
"lstrip": false,
|
912 |
+
"normalized": false,
|
913 |
+
"rstrip": false,
|
914 |
+
"single_word": false,
|
915 |
+
"special": false
|
916 |
+
},
|
917 |
+
"114": {
|
918 |
+
"content": "\n\n\n\n\n\n\n",
|
919 |
+
"lstrip": false,
|
920 |
+
"normalized": false,
|
921 |
+
"rstrip": false,
|
922 |
+
"single_word": false,
|
923 |
+
"special": false
|
924 |
+
},
|
925 |
+
"115": {
|
926 |
+
"content": "\n\n\n\n\n\n\n\n",
|
927 |
+
"lstrip": false,
|
928 |
+
"normalized": false,
|
929 |
+
"rstrip": false,
|
930 |
+
"single_word": false,
|
931 |
+
"special": false
|
932 |
+
},
|
933 |
+
"116": {
|
934 |
+
"content": "\n\n\n\n\n\n\n\n\n",
|
935 |
+
"lstrip": false,
|
936 |
+
"normalized": false,
|
937 |
+
"rstrip": false,
|
938 |
+
"single_word": false,
|
939 |
+
"special": false
|
940 |
+
},
|
941 |
+
"117": {
|
942 |
+
"content": "\n\n\n\n\n\n\n\n\n\n",
|
943 |
+
"lstrip": false,
|
944 |
+
"normalized": false,
|
945 |
+
"rstrip": false,
|
946 |
+
"single_word": false,
|
947 |
+
"special": false
|
948 |
+
},
|
949 |
+
"118": {
|
950 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n",
|
951 |
+
"lstrip": false,
|
952 |
+
"normalized": false,
|
953 |
+
"rstrip": false,
|
954 |
+
"single_word": false,
|
955 |
+
"special": false
|
956 |
+
},
|
957 |
+
"119": {
|
958 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n",
|
959 |
+
"lstrip": false,
|
960 |
+
"normalized": false,
|
961 |
+
"rstrip": false,
|
962 |
+
"single_word": false,
|
963 |
+
"special": false
|
964 |
+
},
|
965 |
+
"120": {
|
966 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
967 |
+
"lstrip": false,
|
968 |
+
"normalized": false,
|
969 |
+
"rstrip": false,
|
970 |
+
"single_word": false,
|
971 |
+
"special": false
|
972 |
+
},
|
973 |
+
"121": {
|
974 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
975 |
+
"lstrip": false,
|
976 |
+
"normalized": false,
|
977 |
+
"rstrip": false,
|
978 |
+
"single_word": false,
|
979 |
+
"special": false
|
980 |
+
},
|
981 |
+
"122": {
|
982 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
983 |
+
"lstrip": false,
|
984 |
+
"normalized": false,
|
985 |
+
"rstrip": false,
|
986 |
+
"single_word": false,
|
987 |
+
"special": false
|
988 |
+
},
|
989 |
+
"123": {
|
990 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
991 |
+
"lstrip": false,
|
992 |
+
"normalized": false,
|
993 |
+
"rstrip": false,
|
994 |
+
"single_word": false,
|
995 |
+
"special": false
|
996 |
+
},
|
997 |
+
"124": {
|
998 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
999 |
+
"lstrip": false,
|
1000 |
+
"normalized": false,
|
1001 |
+
"rstrip": false,
|
1002 |
+
"single_word": false,
|
1003 |
+
"special": false
|
1004 |
+
},
|
1005 |
+
"125": {
|
1006 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1007 |
+
"lstrip": false,
|
1008 |
+
"normalized": false,
|
1009 |
+
"rstrip": false,
|
1010 |
+
"single_word": false,
|
1011 |
+
"special": false
|
1012 |
+
},
|
1013 |
+
"126": {
|
1014 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1015 |
+
"lstrip": false,
|
1016 |
+
"normalized": false,
|
1017 |
+
"rstrip": false,
|
1018 |
+
"single_word": false,
|
1019 |
+
"special": false
|
1020 |
+
},
|
1021 |
+
"127": {
|
1022 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1023 |
+
"lstrip": false,
|
1024 |
+
"normalized": false,
|
1025 |
+
"rstrip": false,
|
1026 |
+
"single_word": false,
|
1027 |
+
"special": false
|
1028 |
+
},
|
1029 |
+
"128": {
|
1030 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1031 |
+
"lstrip": false,
|
1032 |
+
"normalized": false,
|
1033 |
+
"rstrip": false,
|
1034 |
+
"single_word": false,
|
1035 |
+
"special": false
|
1036 |
+
},
|
1037 |
+
"129": {
|
1038 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1039 |
+
"lstrip": false,
|
1040 |
+
"normalized": false,
|
1041 |
+
"rstrip": false,
|
1042 |
+
"single_word": false,
|
1043 |
+
"special": false
|
1044 |
+
},
|
1045 |
+
"130": {
|
1046 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1047 |
+
"lstrip": false,
|
1048 |
+
"normalized": false,
|
1049 |
+
"rstrip": false,
|
1050 |
+
"single_word": false,
|
1051 |
+
"special": false
|
1052 |
+
},
|
1053 |
+
"131": {
|
1054 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1055 |
+
"lstrip": false,
|
1056 |
+
"normalized": false,
|
1057 |
+
"rstrip": false,
|
1058 |
+
"single_word": false,
|
1059 |
+
"special": false
|
1060 |
+
},
|
1061 |
+
"132": {
|
1062 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1063 |
+
"lstrip": false,
|
1064 |
+
"normalized": false,
|
1065 |
+
"rstrip": false,
|
1066 |
+
"single_word": false,
|
1067 |
+
"special": false
|
1068 |
+
},
|
1069 |
+
"133": {
|
1070 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1071 |
+
"lstrip": false,
|
1072 |
+
"normalized": false,
|
1073 |
+
"rstrip": false,
|
1074 |
+
"single_word": false,
|
1075 |
+
"special": false
|
1076 |
+
},
|
1077 |
+
"134": {
|
1078 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1079 |
+
"lstrip": false,
|
1080 |
+
"normalized": false,
|
1081 |
+
"rstrip": false,
|
1082 |
+
"single_word": false,
|
1083 |
+
"special": false
|
1084 |
+
},
|
1085 |
+
"135": {
|
1086 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1087 |
+
"lstrip": false,
|
1088 |
+
"normalized": false,
|
1089 |
+
"rstrip": false,
|
1090 |
+
"single_word": false,
|
1091 |
+
"special": false
|
1092 |
+
},
|
1093 |
+
"136": {
|
1094 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1095 |
+
"lstrip": false,
|
1096 |
+
"normalized": false,
|
1097 |
+
"rstrip": false,
|
1098 |
+
"single_word": false,
|
1099 |
+
"special": false
|
1100 |
+
},
|
1101 |
+
"137": {
|
1102 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1103 |
+
"lstrip": false,
|
1104 |
+
"normalized": false,
|
1105 |
+
"rstrip": false,
|
1106 |
+
"single_word": false,
|
1107 |
+
"special": false
|
1108 |
+
},
|
1109 |
+
"138": {
|
1110 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1111 |
+
"lstrip": false,
|
1112 |
+
"normalized": false,
|
1113 |
+
"rstrip": false,
|
1114 |
+
"single_word": false,
|
1115 |
+
"special": false
|
1116 |
+
},
|
1117 |
+
"139": {
|
1118 |
+
"content": "▁▁",
|
1119 |
+
"lstrip": false,
|
1120 |
+
"normalized": false,
|
1121 |
+
"rstrip": false,
|
1122 |
+
"single_word": false,
|
1123 |
+
"special": false
|
1124 |
+
},
|
1125 |
+
"140": {
|
1126 |
+
"content": "▁▁▁",
|
1127 |
+
"lstrip": false,
|
1128 |
+
"normalized": false,
|
1129 |
+
"rstrip": false,
|
1130 |
+
"single_word": false,
|
1131 |
+
"special": false
|
1132 |
+
},
|
1133 |
+
"141": {
|
1134 |
+
"content": "▁▁▁▁",
|
1135 |
+
"lstrip": false,
|
1136 |
+
"normalized": false,
|
1137 |
+
"rstrip": false,
|
1138 |
+
"single_word": false,
|
1139 |
+
"special": false
|
1140 |
+
},
|
1141 |
+
"142": {
|
1142 |
+
"content": "▁▁▁▁▁",
|
1143 |
+
"lstrip": false,
|
1144 |
+
"normalized": false,
|
1145 |
+
"rstrip": false,
|
1146 |
+
"single_word": false,
|
1147 |
+
"special": false
|
1148 |
+
},
|
1149 |
+
"143": {
|
1150 |
+
"content": "▁▁▁▁▁▁",
|
1151 |
+
"lstrip": false,
|
1152 |
+
"normalized": false,
|
1153 |
+
"rstrip": false,
|
1154 |
+
"single_word": false,
|
1155 |
+
"special": false
|
1156 |
+
},
|
1157 |
+
"144": {
|
1158 |
+
"content": "▁▁▁▁▁▁▁",
|
1159 |
+
"lstrip": false,
|
1160 |
+
"normalized": false,
|
1161 |
+
"rstrip": false,
|
1162 |
+
"single_word": false,
|
1163 |
+
"special": false
|
1164 |
+
},
|
1165 |
+
"145": {
|
1166 |
+
"content": "▁▁▁▁▁▁▁▁",
|
1167 |
+
"lstrip": false,
|
1168 |
+
"normalized": false,
|
1169 |
+
"rstrip": false,
|
1170 |
+
"single_word": false,
|
1171 |
+
"special": false
|
1172 |
+
},
|
1173 |
+
"146": {
|
1174 |
+
"content": "▁▁▁▁▁▁▁▁▁",
|
1175 |
+
"lstrip": false,
|
1176 |
+
"normalized": false,
|
1177 |
+
"rstrip": false,
|
1178 |
+
"single_word": false,
|
1179 |
+
"special": false
|
1180 |
+
},
|
1181 |
+
"147": {
|
1182 |
+
"content": "▁▁▁▁▁▁▁▁▁▁",
|
1183 |
+
"lstrip": false,
|
1184 |
+
"normalized": false,
|
1185 |
+
"rstrip": false,
|
1186 |
+
"single_word": false,
|
1187 |
+
"special": false
|
1188 |
+
},
|
1189 |
+
"148": {
|
1190 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁",
|
1191 |
+
"lstrip": false,
|
1192 |
+
"normalized": false,
|
1193 |
+
"rstrip": false,
|
1194 |
+
"single_word": false,
|
1195 |
+
"special": false
|
1196 |
+
},
|
1197 |
+
"149": {
|
1198 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁",
|
1199 |
+
"lstrip": false,
|
1200 |
+
"normalized": false,
|
1201 |
+
"rstrip": false,
|
1202 |
+
"single_word": false,
|
1203 |
+
"special": false
|
1204 |
+
},
|
1205 |
+
"150": {
|
1206 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1207 |
+
"lstrip": false,
|
1208 |
+
"normalized": false,
|
1209 |
+
"rstrip": false,
|
1210 |
+
"single_word": false,
|
1211 |
+
"special": false
|
1212 |
+
},
|
1213 |
+
"151": {
|
1214 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1215 |
+
"lstrip": false,
|
1216 |
+
"normalized": false,
|
1217 |
+
"rstrip": false,
|
1218 |
+
"single_word": false,
|
1219 |
+
"special": false
|
1220 |
+
},
|
1221 |
+
"152": {
|
1222 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1223 |
+
"lstrip": false,
|
1224 |
+
"normalized": false,
|
1225 |
+
"rstrip": false,
|
1226 |
+
"single_word": false,
|
1227 |
+
"special": false
|
1228 |
+
},
|
1229 |
+
"153": {
|
1230 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1231 |
+
"lstrip": false,
|
1232 |
+
"normalized": false,
|
1233 |
+
"rstrip": false,
|
1234 |
+
"single_word": false,
|
1235 |
+
"special": false
|
1236 |
+
},
|
1237 |
+
"154": {
|
1238 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1239 |
+
"lstrip": false,
|
1240 |
+
"normalized": false,
|
1241 |
+
"rstrip": false,
|
1242 |
+
"single_word": false,
|
1243 |
+
"special": false
|
1244 |
+
},
|
1245 |
+
"155": {
|
1246 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1247 |
+
"lstrip": false,
|
1248 |
+
"normalized": false,
|
1249 |
+
"rstrip": false,
|
1250 |
+
"single_word": false,
|
1251 |
+
"special": false
|
1252 |
+
},
|
1253 |
+
"156": {
|
1254 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1255 |
+
"lstrip": false,
|
1256 |
+
"normalized": false,
|
1257 |
+
"rstrip": false,
|
1258 |
+
"single_word": false,
|
1259 |
+
"special": false
|
1260 |
+
},
|
1261 |
+
"157": {
|
1262 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1263 |
+
"lstrip": false,
|
1264 |
+
"normalized": false,
|
1265 |
+
"rstrip": false,
|
1266 |
+
"single_word": false,
|
1267 |
+
"special": false
|
1268 |
+
},
|
1269 |
+
"158": {
|
1270 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1271 |
+
"lstrip": false,
|
1272 |
+
"normalized": false,
|
1273 |
+
"rstrip": false,
|
1274 |
+
"single_word": false,
|
1275 |
+
"special": false
|
1276 |
+
},
|
1277 |
+
"159": {
|
1278 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1279 |
+
"lstrip": false,
|
1280 |
+
"normalized": false,
|
1281 |
+
"rstrip": false,
|
1282 |
+
"single_word": false,
|
1283 |
+
"special": false
|
1284 |
+
},
|
1285 |
+
"160": {
|
1286 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1287 |
+
"lstrip": false,
|
1288 |
+
"normalized": false,
|
1289 |
+
"rstrip": false,
|
1290 |
+
"single_word": false,
|
1291 |
+
"special": false
|
1292 |
+
},
|
1293 |
+
"161": {
|
1294 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1295 |
+
"lstrip": false,
|
1296 |
+
"normalized": false,
|
1297 |
+
"rstrip": false,
|
1298 |
+
"single_word": false,
|
1299 |
+
"special": false
|
1300 |
+
},
|
1301 |
+
"162": {
|
1302 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1303 |
+
"lstrip": false,
|
1304 |
+
"normalized": false,
|
1305 |
+
"rstrip": false,
|
1306 |
+
"single_word": false,
|
1307 |
+
"special": false
|
1308 |
+
},
|
1309 |
+
"163": {
|
1310 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1311 |
+
"lstrip": false,
|
1312 |
+
"normalized": false,
|
1313 |
+
"rstrip": false,
|
1314 |
+
"single_word": false,
|
1315 |
+
"special": false
|
1316 |
+
},
|
1317 |
+
"164": {
|
1318 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1319 |
+
"lstrip": false,
|
1320 |
+
"normalized": false,
|
1321 |
+
"rstrip": false,
|
1322 |
+
"single_word": false,
|
1323 |
+
"special": false
|
1324 |
+
},
|
1325 |
+
"165": {
|
1326 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1327 |
+
"lstrip": false,
|
1328 |
+
"normalized": false,
|
1329 |
+
"rstrip": false,
|
1330 |
+
"single_word": false,
|
1331 |
+
"special": false
|
1332 |
+
},
|
1333 |
+
"166": {
|
1334 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1335 |
+
"lstrip": false,
|
1336 |
+
"normalized": false,
|
1337 |
+
"rstrip": false,
|
1338 |
+
"single_word": false,
|
1339 |
+
"special": false
|
1340 |
+
},
|
1341 |
+
"167": {
|
1342 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1343 |
+
"lstrip": false,
|
1344 |
+
"normalized": false,
|
1345 |
+
"rstrip": false,
|
1346 |
+
"single_word": false,
|
1347 |
+
"special": false
|
1348 |
+
},
|
1349 |
+
"168": {
|
1350 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1351 |
+
"lstrip": false,
|
1352 |
+
"normalized": false,
|
1353 |
+
"rstrip": false,
|
1354 |
+
"single_word": false,
|
1355 |
+
"special": false
|
1356 |
+
},
|
1357 |
+
"169": {
|
1358 |
+
"content": "<table>",
|
1359 |
+
"lstrip": false,
|
1360 |
+
"normalized": false,
|
1361 |
+
"rstrip": false,
|
1362 |
+
"single_word": false,
|
1363 |
+
"special": false
|
1364 |
+
},
|
1365 |
+
"170": {
|
1366 |
+
"content": "<caption>",
|
1367 |
+
"lstrip": false,
|
1368 |
+
"normalized": false,
|
1369 |
+
"rstrip": false,
|
1370 |
+
"single_word": false,
|
1371 |
+
"special": false
|
1372 |
+
},
|
1373 |
+
"171": {
|
1374 |
+
"content": "<thead>",
|
1375 |
+
"lstrip": false,
|
1376 |
+
"normalized": false,
|
1377 |
+
"rstrip": false,
|
1378 |
+
"single_word": false,
|
1379 |
+
"special": false
|
1380 |
+
},
|
1381 |
+
"172": {
|
1382 |
+
"content": "<tbody>",
|
1383 |
+
"lstrip": false,
|
1384 |
+
"normalized": false,
|
1385 |
+
"rstrip": false,
|
1386 |
+
"single_word": false,
|
1387 |
+
"special": false
|
1388 |
+
},
|
1389 |
+
"173": {
|
1390 |
+
"content": "<tfoot>",
|
1391 |
+
"lstrip": false,
|
1392 |
+
"normalized": false,
|
1393 |
+
"rstrip": false,
|
1394 |
+
"single_word": false,
|
1395 |
+
"special": false
|
1396 |
+
},
|
1397 |
+
"174": {
|
1398 |
+
"content": "<tr>",
|
1399 |
+
"lstrip": false,
|
1400 |
+
"normalized": false,
|
1401 |
+
"rstrip": false,
|
1402 |
+
"single_word": false,
|
1403 |
+
"special": false
|
1404 |
+
},
|
1405 |
+
"175": {
|
1406 |
+
"content": "<th>",
|
1407 |
+
"lstrip": false,
|
1408 |
+
"normalized": false,
|
1409 |
+
"rstrip": false,
|
1410 |
+
"single_word": false,
|
1411 |
+
"special": false
|
1412 |
+
},
|
1413 |
+
"176": {
|
1414 |
+
"content": "<td>",
|
1415 |
+
"lstrip": false,
|
1416 |
+
"normalized": false,
|
1417 |
+
"rstrip": false,
|
1418 |
+
"single_word": false,
|
1419 |
+
"special": false
|
1420 |
+
},
|
1421 |
+
"177": {
|
1422 |
+
"content": "</table>",
|
1423 |
+
"lstrip": false,
|
1424 |
+
"normalized": false,
|
1425 |
+
"rstrip": false,
|
1426 |
+
"single_word": false,
|
1427 |
+
"special": false
|
1428 |
+
},
|
1429 |
+
"178": {
|
1430 |
+
"content": "</caption>",
|
1431 |
+
"lstrip": false,
|
1432 |
+
"normalized": false,
|
1433 |
+
"rstrip": false,
|
1434 |
+
"single_word": false,
|
1435 |
+
"special": false
|
1436 |
+
},
|
1437 |
+
"179": {
|
1438 |
+
"content": "</thead>",
|
1439 |
+
"lstrip": false,
|
1440 |
+
"normalized": false,
|
1441 |
+
"rstrip": false,
|
1442 |
+
"single_word": false,
|
1443 |
+
"special": false
|
1444 |
+
},
|
1445 |
+
"180": {
|
1446 |
+
"content": "</tbody>",
|
1447 |
+
"lstrip": false,
|
1448 |
+
"normalized": false,
|
1449 |
+
"rstrip": false,
|
1450 |
+
"single_word": false,
|
1451 |
+
"special": false
|
1452 |
+
},
|
1453 |
+
"181": {
|
1454 |
+
"content": "</tfoot>",
|
1455 |
+
"lstrip": false,
|
1456 |
+
"normalized": false,
|
1457 |
+
"rstrip": false,
|
1458 |
+
"single_word": false,
|
1459 |
+
"special": false
|
1460 |
+
},
|
1461 |
+
"182": {
|
1462 |
+
"content": "</tr>",
|
1463 |
+
"lstrip": false,
|
1464 |
+
"normalized": false,
|
1465 |
+
"rstrip": false,
|
1466 |
+
"single_word": false,
|
1467 |
+
"special": false
|
1468 |
+
},
|
1469 |
+
"183": {
|
1470 |
+
"content": "</th>",
|
1471 |
+
"lstrip": false,
|
1472 |
+
"normalized": false,
|
1473 |
+
"rstrip": false,
|
1474 |
+
"single_word": false,
|
1475 |
+
"special": false
|
1476 |
+
},
|
1477 |
+
"184": {
|
1478 |
+
"content": "</td>",
|
1479 |
+
"lstrip": false,
|
1480 |
+
"normalized": false,
|
1481 |
+
"rstrip": false,
|
1482 |
+
"single_word": false,
|
1483 |
+
"special": false
|
1484 |
+
},
|
1485 |
+
"185": {
|
1486 |
+
"content": "<h1>",
|
1487 |
+
"lstrip": false,
|
1488 |
+
"normalized": false,
|
1489 |
+
"rstrip": false,
|
1490 |
+
"single_word": false,
|
1491 |
+
"special": false
|
1492 |
+
},
|
1493 |
+
"186": {
|
1494 |
+
"content": "<h2>",
|
1495 |
+
"lstrip": false,
|
1496 |
+
"normalized": false,
|
1497 |
+
"rstrip": false,
|
1498 |
+
"single_word": false,
|
1499 |
+
"special": false
|
1500 |
+
},
|
1501 |
+
"187": {
|
1502 |
+
"content": "<h3>",
|
1503 |
+
"lstrip": false,
|
1504 |
+
"normalized": false,
|
1505 |
+
"rstrip": false,
|
1506 |
+
"single_word": false,
|
1507 |
+
"special": false
|
1508 |
+
},
|
1509 |
+
"188": {
|
1510 |
+
"content": "<h4>",
|
1511 |
+
"lstrip": false,
|
1512 |
+
"normalized": false,
|
1513 |
+
"rstrip": false,
|
1514 |
+
"single_word": false,
|
1515 |
+
"special": false
|
1516 |
+
},
|
1517 |
+
"189": {
|
1518 |
+
"content": "<h5>",
|
1519 |
+
"lstrip": false,
|
1520 |
+
"normalized": false,
|
1521 |
+
"rstrip": false,
|
1522 |
+
"single_word": false,
|
1523 |
+
"special": false
|
1524 |
+
},
|
1525 |
+
"190": {
|
1526 |
+
"content": "<h6>",
|
1527 |
+
"lstrip": false,
|
1528 |
+
"normalized": false,
|
1529 |
+
"rstrip": false,
|
1530 |
+
"single_word": false,
|
1531 |
+
"special": false
|
1532 |
+
},
|
1533 |
+
"191": {
|
1534 |
+
"content": "<blockquote>",
|
1535 |
+
"lstrip": false,
|
1536 |
+
"normalized": false,
|
1537 |
+
"rstrip": false,
|
1538 |
+
"single_word": false,
|
1539 |
+
"special": false
|
1540 |
+
},
|
1541 |
+
"192": {
|
1542 |
+
"content": "</h1>",
|
1543 |
+
"lstrip": false,
|
1544 |
+
"normalized": false,
|
1545 |
+
"rstrip": false,
|
1546 |
+
"single_word": false,
|
1547 |
+
"special": false
|
1548 |
+
},
|
1549 |
+
"193": {
|
1550 |
+
"content": "</h2>",
|
1551 |
+
"lstrip": false,
|
1552 |
+
"normalized": false,
|
1553 |
+
"rstrip": false,
|
1554 |
+
"single_word": false,
|
1555 |
+
"special": false
|
1556 |
+
},
|
1557 |
+
"194": {
|
1558 |
+
"content": "</h3>",
|
1559 |
+
"lstrip": false,
|
1560 |
+
"normalized": false,
|
1561 |
+
"rstrip": false,
|
1562 |
+
"single_word": false,
|
1563 |
+
"special": false
|
1564 |
+
},
|
1565 |
+
"195": {
|
1566 |
+
"content": "</h4>",
|
1567 |
+
"lstrip": false,
|
1568 |
+
"normalized": false,
|
1569 |
+
"rstrip": false,
|
1570 |
+
"single_word": false,
|
1571 |
+
"special": false
|
1572 |
+
},
|
1573 |
+
"196": {
|
1574 |
+
"content": "</h5>",
|
1575 |
+
"lstrip": false,
|
1576 |
+
"normalized": false,
|
1577 |
+
"rstrip": false,
|
1578 |
+
"single_word": false,
|
1579 |
+
"special": false
|
1580 |
+
},
|
1581 |
+
"197": {
|
1582 |
+
"content": "</h6>",
|
1583 |
+
"lstrip": false,
|
1584 |
+
"normalized": false,
|
1585 |
+
"rstrip": false,
|
1586 |
+
"single_word": false,
|
1587 |
+
"special": false
|
1588 |
+
},
|
1589 |
+
"198": {
|
1590 |
+
"content": "</blockquote>",
|
1591 |
+
"lstrip": false,
|
1592 |
+
"normalized": false,
|
1593 |
+
"rstrip": false,
|
1594 |
+
"single_word": false,
|
1595 |
+
"special": false
|
1596 |
+
},
|
1597 |
+
"199": {
|
1598 |
+
"content": "<strong>",
|
1599 |
+
"lstrip": false,
|
1600 |
+
"normalized": false,
|
1601 |
+
"rstrip": false,
|
1602 |
+
"single_word": false,
|
1603 |
+
"special": false
|
1604 |
+
},
|
1605 |
+
"200": {
|
1606 |
+
"content": "<em>",
|
1607 |
+
"lstrip": false,
|
1608 |
+
"normalized": false,
|
1609 |
+
"rstrip": false,
|
1610 |
+
"single_word": false,
|
1611 |
+
"special": false
|
1612 |
+
},
|
1613 |
+
"201": {
|
1614 |
+
"content": "<b>",
|
1615 |
+
"lstrip": false,
|
1616 |
+
"normalized": false,
|
1617 |
+
"rstrip": false,
|
1618 |
+
"single_word": false,
|
1619 |
+
"special": false
|
1620 |
+
},
|
1621 |
+
"202": {
|
1622 |
+
"content": "<i>",
|
1623 |
+
"lstrip": false,
|
1624 |
+
"normalized": false,
|
1625 |
+
"rstrip": false,
|
1626 |
+
"single_word": false,
|
1627 |
+
"special": false
|
1628 |
+
},
|
1629 |
+
"203": {
|
1630 |
+
"content": "<u>",
|
1631 |
+
"lstrip": false,
|
1632 |
+
"normalized": false,
|
1633 |
+
"rstrip": false,
|
1634 |
+
"single_word": false,
|
1635 |
+
"special": false
|
1636 |
+
},
|
1637 |
+
"204": {
|
1638 |
+
"content": "<s>",
|
1639 |
+
"lstrip": false,
|
1640 |
+
"normalized": false,
|
1641 |
+
"rstrip": false,
|
1642 |
+
"single_word": false,
|
1643 |
+
"special": false
|
1644 |
+
},
|
1645 |
+
"205": {
|
1646 |
+
"content": "<sub>",
|
1647 |
+
"lstrip": false,
|
1648 |
+
"normalized": false,
|
1649 |
+
"rstrip": false,
|
1650 |
+
"single_word": false,
|
1651 |
+
"special": false
|
1652 |
+
},
|
1653 |
+
"206": {
|
1654 |
+
"content": "<sup>",
|
1655 |
+
"lstrip": false,
|
1656 |
+
"normalized": false,
|
1657 |
+
"rstrip": false,
|
1658 |
+
"single_word": false,
|
1659 |
+
"special": false
|
1660 |
+
},
|
1661 |
+
"207": {
|
1662 |
+
"content": "<code>",
|
1663 |
+
"lstrip": false,
|
1664 |
+
"normalized": false,
|
1665 |
+
"rstrip": false,
|
1666 |
+
"single_word": false,
|
1667 |
+
"special": false
|
1668 |
+
},
|
1669 |
+
"208": {
|
1670 |
+
"content": "</strong>",
|
1671 |
+
"lstrip": false,
|
1672 |
+
"normalized": false,
|
1673 |
+
"rstrip": false,
|
1674 |
+
"single_word": false,
|
1675 |
+
"special": false
|
1676 |
+
},
|
1677 |
+
"209": {
|
1678 |
+
"content": "</em>",
|
1679 |
+
"lstrip": false,
|
1680 |
+
"normalized": false,
|
1681 |
+
"rstrip": false,
|
1682 |
+
"single_word": false,
|
1683 |
+
"special": false
|
1684 |
+
},
|
1685 |
+
"210": {
|
1686 |
+
"content": "</b>",
|
1687 |
+
"lstrip": false,
|
1688 |
+
"normalized": false,
|
1689 |
+
"rstrip": false,
|
1690 |
+
"single_word": false,
|
1691 |
+
"special": false
|
1692 |
+
},
|
1693 |
+
"211": {
|
1694 |
+
"content": "</i>",
|
1695 |
+
"lstrip": false,
|
1696 |
+
"normalized": false,
|
1697 |
+
"rstrip": false,
|
1698 |
+
"single_word": false,
|
1699 |
+
"special": false
|
1700 |
+
},
|
1701 |
+
"212": {
|
1702 |
+
"content": "</u>",
|
1703 |
+
"lstrip": false,
|
1704 |
+
"normalized": false,
|
1705 |
+
"rstrip": false,
|
1706 |
+
"single_word": false,
|
1707 |
+
"special": false
|
1708 |
+
},
|
1709 |
+
"213": {
|
1710 |
+
"content": "</s>",
|
1711 |
+
"lstrip": false,
|
1712 |
+
"normalized": false,
|
1713 |
+
"rstrip": false,
|
1714 |
+
"single_word": false,
|
1715 |
+
"special": false
|
1716 |
+
},
|
1717 |
+
"214": {
|
1718 |
+
"content": "</sub>",
|
1719 |
+
"lstrip": false,
|
1720 |
+
"normalized": false,
|
1721 |
+
"rstrip": false,
|
1722 |
+
"single_word": false,
|
1723 |
+
"special": false
|
1724 |
+
},
|
1725 |
+
"215": {
|
1726 |
+
"content": "</sup>",
|
1727 |
+
"lstrip": false,
|
1728 |
+
"normalized": false,
|
1729 |
+
"rstrip": false,
|
1730 |
+
"single_word": false,
|
1731 |
+
"special": false
|
1732 |
+
},
|
1733 |
+
"216": {
|
1734 |
+
"content": "</code>",
|
1735 |
+
"lstrip": false,
|
1736 |
+
"normalized": false,
|
1737 |
+
"rstrip": false,
|
1738 |
+
"single_word": false,
|
1739 |
+
"special": false
|
1740 |
+
},
|
1741 |
+
"255968": {
|
1742 |
+
"content": "[toxicity=0]",
|
1743 |
+
"lstrip": false,
|
1744 |
+
"normalized": false,
|
1745 |
+
"rstrip": false,
|
1746 |
+
"single_word": false,
|
1747 |
+
"special": false
|
1748 |
+
},
|
1749 |
+
"255969": {
|
1750 |
+
"content": "\t\t",
|
1751 |
+
"lstrip": false,
|
1752 |
+
"normalized": false,
|
1753 |
+
"rstrip": false,
|
1754 |
+
"single_word": false,
|
1755 |
+
"special": false
|
1756 |
+
},
|
1757 |
+
"255970": {
|
1758 |
+
"content": "\t\t\t",
|
1759 |
+
"lstrip": false,
|
1760 |
+
"normalized": false,
|
1761 |
+
"rstrip": false,
|
1762 |
+
"single_word": false,
|
1763 |
+
"special": false
|
1764 |
+
},
|
1765 |
+
"255971": {
|
1766 |
+
"content": "\t\t\t\t",
|
1767 |
+
"lstrip": false,
|
1768 |
+
"normalized": false,
|
1769 |
+
"rstrip": false,
|
1770 |
+
"single_word": false,
|
1771 |
+
"special": false
|
1772 |
+
},
|
1773 |
+
"255972": {
|
1774 |
+
"content": "\t\t\t\t\t",
|
1775 |
+
"lstrip": false,
|
1776 |
+
"normalized": false,
|
1777 |
+
"rstrip": false,
|
1778 |
+
"single_word": false,
|
1779 |
+
"special": false
|
1780 |
+
},
|
1781 |
+
"255973": {
|
1782 |
+
"content": "\t\t\t\t\t\t",
|
1783 |
+
"lstrip": false,
|
1784 |
+
"normalized": false,
|
1785 |
+
"rstrip": false,
|
1786 |
+
"single_word": false,
|
1787 |
+
"special": false
|
1788 |
+
},
|
1789 |
+
"255974": {
|
1790 |
+
"content": "\t\t\t\t\t\t\t",
|
1791 |
+
"lstrip": false,
|
1792 |
+
"normalized": false,
|
1793 |
+
"rstrip": false,
|
1794 |
+
"single_word": false,
|
1795 |
+
"special": false
|
1796 |
+
},
|
1797 |
+
"255975": {
|
1798 |
+
"content": "\t\t\t\t\t\t\t\t",
|
1799 |
+
"lstrip": false,
|
1800 |
+
"normalized": false,
|
1801 |
+
"rstrip": false,
|
1802 |
+
"single_word": false,
|
1803 |
+
"special": false
|
1804 |
+
},
|
1805 |
+
"255976": {
|
1806 |
+
"content": "\t\t\t\t\t\t\t\t\t",
|
1807 |
+
"lstrip": false,
|
1808 |
+
"normalized": false,
|
1809 |
+
"rstrip": false,
|
1810 |
+
"single_word": false,
|
1811 |
+
"special": false
|
1812 |
+
},
|
1813 |
+
"255977": {
|
1814 |
+
"content": "\t\t\t\t\t\t\t\t\t\t",
|
1815 |
+
"lstrip": false,
|
1816 |
+
"normalized": false,
|
1817 |
+
"rstrip": false,
|
1818 |
+
"single_word": false,
|
1819 |
+
"special": false
|
1820 |
+
},
|
1821 |
+
"255978": {
|
1822 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t",
|
1823 |
+
"lstrip": false,
|
1824 |
+
"normalized": false,
|
1825 |
+
"rstrip": false,
|
1826 |
+
"single_word": false,
|
1827 |
+
"special": false
|
1828 |
+
},
|
1829 |
+
"255979": {
|
1830 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t",
|
1831 |
+
"lstrip": false,
|
1832 |
+
"normalized": false,
|
1833 |
+
"rstrip": false,
|
1834 |
+
"single_word": false,
|
1835 |
+
"special": false
|
1836 |
+
},
|
1837 |
+
"255980": {
|
1838 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1839 |
+
"lstrip": false,
|
1840 |
+
"normalized": false,
|
1841 |
+
"rstrip": false,
|
1842 |
+
"single_word": false,
|
1843 |
+
"special": false
|
1844 |
+
},
|
1845 |
+
"255981": {
|
1846 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1847 |
+
"lstrip": false,
|
1848 |
+
"normalized": false,
|
1849 |
+
"rstrip": false,
|
1850 |
+
"single_word": false,
|
1851 |
+
"special": false
|
1852 |
+
},
|
1853 |
+
"255982": {
|
1854 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1855 |
+
"lstrip": false,
|
1856 |
+
"normalized": false,
|
1857 |
+
"rstrip": false,
|
1858 |
+
"single_word": false,
|
1859 |
+
"special": false
|
1860 |
+
},
|
1861 |
+
"255983": {
|
1862 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1863 |
+
"lstrip": false,
|
1864 |
+
"normalized": false,
|
1865 |
+
"rstrip": false,
|
1866 |
+
"single_word": false,
|
1867 |
+
"special": false
|
1868 |
+
},
|
1869 |
+
"255984": {
|
1870 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1871 |
+
"lstrip": false,
|
1872 |
+
"normalized": false,
|
1873 |
+
"rstrip": false,
|
1874 |
+
"single_word": false,
|
1875 |
+
"special": false
|
1876 |
+
},
|
1877 |
+
"255985": {
|
1878 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1879 |
+
"lstrip": false,
|
1880 |
+
"normalized": false,
|
1881 |
+
"rstrip": false,
|
1882 |
+
"single_word": false,
|
1883 |
+
"special": false
|
1884 |
+
},
|
1885 |
+
"255986": {
|
1886 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1887 |
+
"lstrip": false,
|
1888 |
+
"normalized": false,
|
1889 |
+
"rstrip": false,
|
1890 |
+
"single_word": false,
|
1891 |
+
"special": false
|
1892 |
+
},
|
1893 |
+
"255987": {
|
1894 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1895 |
+
"lstrip": false,
|
1896 |
+
"normalized": false,
|
1897 |
+
"rstrip": false,
|
1898 |
+
"single_word": false,
|
1899 |
+
"special": false
|
1900 |
+
},
|
1901 |
+
"255988": {
|
1902 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1903 |
+
"lstrip": false,
|
1904 |
+
"normalized": false,
|
1905 |
+
"rstrip": false,
|
1906 |
+
"single_word": false,
|
1907 |
+
"special": false
|
1908 |
+
},
|
1909 |
+
"255989": {
|
1910 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1911 |
+
"lstrip": false,
|
1912 |
+
"normalized": false,
|
1913 |
+
"rstrip": false,
|
1914 |
+
"single_word": false,
|
1915 |
+
"special": false
|
1916 |
+
},
|
1917 |
+
"255990": {
|
1918 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1919 |
+
"lstrip": false,
|
1920 |
+
"normalized": false,
|
1921 |
+
"rstrip": false,
|
1922 |
+
"single_word": false,
|
1923 |
+
"special": false
|
1924 |
+
},
|
1925 |
+
"255991": {
|
1926 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1927 |
+
"lstrip": false,
|
1928 |
+
"normalized": false,
|
1929 |
+
"rstrip": false,
|
1930 |
+
"single_word": false,
|
1931 |
+
"special": false
|
1932 |
+
},
|
1933 |
+
"255992": {
|
1934 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1935 |
+
"lstrip": false,
|
1936 |
+
"normalized": false,
|
1937 |
+
"rstrip": false,
|
1938 |
+
"single_word": false,
|
1939 |
+
"special": false
|
1940 |
+
},
|
1941 |
+
"255993": {
|
1942 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1943 |
+
"lstrip": false,
|
1944 |
+
"normalized": false,
|
1945 |
+
"rstrip": false,
|
1946 |
+
"single_word": false,
|
1947 |
+
"special": false
|
1948 |
+
},
|
1949 |
+
"255994": {
|
1950 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1951 |
+
"lstrip": false,
|
1952 |
+
"normalized": false,
|
1953 |
+
"rstrip": false,
|
1954 |
+
"single_word": false,
|
1955 |
+
"special": false
|
1956 |
+
},
|
1957 |
+
"255995": {
|
1958 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1959 |
+
"lstrip": false,
|
1960 |
+
"normalized": false,
|
1961 |
+
"rstrip": false,
|
1962 |
+
"single_word": false,
|
1963 |
+
"special": false
|
1964 |
+
},
|
1965 |
+
"255996": {
|
1966 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1967 |
+
"lstrip": false,
|
1968 |
+
"normalized": false,
|
1969 |
+
"rstrip": false,
|
1970 |
+
"single_word": false,
|
1971 |
+
"special": false
|
1972 |
+
},
|
1973 |
+
"255997": {
|
1974 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1975 |
+
"lstrip": false,
|
1976 |
+
"normalized": false,
|
1977 |
+
"rstrip": false,
|
1978 |
+
"single_word": false,
|
1979 |
+
"special": false
|
1980 |
+
},
|
1981 |
+
"255998": {
|
1982 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
1983 |
+
"lstrip": false,
|
1984 |
+
"normalized": false,
|
1985 |
+
"rstrip": false,
|
1986 |
+
"single_word": false,
|
1987 |
+
"special": false
|
1988 |
+
},
|
1989 |
+
"255999": {
|
1990 |
+
"content": "<unused99>",
|
1991 |
+
"lstrip": false,
|
1992 |
+
"normalized": false,
|
1993 |
+
"rstrip": false,
|
1994 |
+
"single_word": false,
|
1995 |
+
"special": false
|
1996 |
+
}
|
1997 |
+
},
|
1998 |
+
"additional_special_tokens": [
|
1999 |
+
"<start_of_turn>",
|
2000 |
+
"<end_of_turn>"
|
2001 |
+
],
|
2002 |
+
"bos_token": "<bos>",
|
2003 |
+
"chat_template": "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '<start_of_turn>' + role + '\n' + message['content'] | trim + '<end_of_turn>\n' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\n'}}{% endif %}",
|
2004 |
+
"clean_up_tokenization_spaces": false,
|
2005 |
+
"eos_token": "<eos>",
|
2006 |
+
"model_max_length": 1000000000000000019884624838656,
|
2007 |
+
"pad_token": "<pad>",
|
2008 |
+
"sp_model_kwargs": {},
|
2009 |
+
"spaces_between_special_tokens": false,
|
2010 |
+
"tokenizer_class": "GemmaTokenizer",
|
2011 |
+
"unk_token": "<unk>",
|
2012 |
+
"use_default_system_prompt": false
|
2013 |
+
}
|