File size: 41,988 Bytes
ed25c49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"speechbrain.utils.distributed - distributed_launch flag is disabled, this experiment will be executed without DDP.\n",
"speechbrain.lobes.models.huggingface_wav2vec - speechbrain.lobes.models.huggingface_wav2vec - wav2vec 2.0 feature extractor is frozen.\n",
"speechbrain.core - Beginning experiment!\n",
"speechbrain.core - Experiment folder: TunisianASR/semi_wavlm_large_tunisian_ctc/1234\n",
"speechbrain.pretrained.fetching - Fetch hyperparams.yaml: Using existing file/symlink in pretrained_models/asr-wav2vec2-commonvoice-fr/hyperparams.yaml.\n",
"speechbrain.pretrained.fetching - Fetch custom.py: Linking to local file in /home/salah/Code_Switched_Tunisian_Speech_Recognition/asr-wav2vec2-commonvoice-fr/custom.py.\n",
"speechbrain.lobes.models.huggingface_wav2vec - speechbrain.lobes.models.huggingface_wav2vec - wav2vec 2.0 is frozen.\n",
"speechbrain.pretrained.fetching - Fetch wav2vec2.ckpt: Using existing file/symlink in pretrained_models/asr-wav2vec2-commonvoice-fr/wav2vec2.ckpt.\n",
"speechbrain.pretrained.fetching - Fetch asr.ckpt: Using existing file/symlink in pretrained_models/asr-wav2vec2-commonvoice-fr/asr.ckpt.\n",
"speechbrain.pretrained.fetching - Fetch tokenizer.ckpt: Using existing file/symlink in pretrained_models/asr-wav2vec2-commonvoice-fr/tokenizer.ckpt.\n",
"speechbrain.utils.parameter_transfer - Loading pretrained files for: wav2vec2, asr, tokenizer\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Some weights of the model checkpoint at wav2vec2-large-lv60/ were not used when initializing Wav2Vec2Model: ['project_hid.bias', 'project_q.bias', 'project_hid.weight', 'quantizer.codevectors', 'quantizer.weight_proj.weight', 'quantizer.weight_proj.bias', 'project_q.weight']\n",
"- This IS expected if you are initializing Wav2Vec2Model from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
"- This IS NOT expected if you are initializing Wav2Vec2Model from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"speechbrain.lobes.models.huggingface_wav2vec - speechbrain.lobes.models.huggingface_wav2vec - wav2vec 2.0 feature extractor is frozen.\n",
"speechbrain.core - Info: auto_mix_prec arg from hparam file is used\n",
"speechbrain.core - Info: ckpt_interval_minutes arg from hparam file is used\n",
"speechbrain.core - 314.4M trainable parameters in ASRCV\n",
"speechbrain.utils.checkpoints - Loading a checkpoint from EnglishCV/results/wav2vec2_ctc_en/1234/save/CKPT+2023-09-06+22-56-31+00\n",
"speechbrain.core - Info: auto_mix_prec arg from hparam file is used\n",
"speechbrain.core - Info: ckpt_interval_minutes arg from hparam file is used\n",
"speechbrain.core - 314.4M trainable parameters in ASR\n",
"speechbrain.utils.checkpoints - Loading a checkpoint from TunisianASR/semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00\n"
]
}
],
"source": [
"import os\n",
"import sys\n",
"import torch\n",
"import logging\n",
"import speechbrain as sb\n",
"from speechbrain.utils.distributed import run_on_main\n",
"from hyperpyyaml import load_hyperpyyaml\n",
"from pathlib import Path\n",
"import torchaudio.transforms as T\n",
"from cv_train import ASRCV\n",
"import torchaudio\n",
"import numpy as np\n",
"import kenlm\n",
"from pyctcdecode import build_ctcdecoder\n",
"import re\n",
"from torch.nn.utils.rnn import pad_sequence\n",
"import torch.optim as optim\n",
"import torch.nn as nn\n",
"\n",
"\n",
"# Commented out IPython magic to ensure Python compatibility.\n",
"hparams_file, run_opts, overrides = sb.parse_arguments([\"TunisianASR/train_semi.yaml\"])\n",
"\n",
"# If distributed_launch=True then\n",
"# create ddp_group with the right communication protocol\n",
"sb.utils.distributed.ddp_init_group(run_opts)\n",
"\n",
"with open(hparams_file) as fin:\n",
" hparams = load_hyperpyyaml(fin, overrides)\n",
"\n",
"# Create experiment directory\n",
"sb.create_experiment_directory(\n",
" experiment_directory=hparams[\"output_folder\"],\n",
" hyperparams_to_save=hparams_file,\n",
" overrides=overrides,\n",
")\n",
"# Dataset prep (parsing Librispeech)\n",
"\n",
"def dataio_prepare(hparams):\n",
" \"\"\"This function prepares the datasets to be used in the brain class.\n",
" It also defines the data processing pipeline through user-defined functions.\"\"\"\n",
"\n",
" # 1. Define datasets\n",
" data_folder = hparams[\"data_folder\"]\n",
"\n",
" train_data = sb.dataio.dataset.DynamicItemDataset.from_csv(\n",
" csv_path=hparams[\"train_csv\"], replacements={\"data_root\": data_folder},\n",
" )\n",
"\n",
" if hparams[\"sorting\"] == \"ascending\":\n",
" # we sort training data to speed up training and get better results.\n",
" train_data = train_data.filtered_sorted(\n",
" sort_key=\"duration\",\n",
" key_max_value={\"duration\": hparams[\"avoid_if_longer_than\"]},\n",
" )\n",
" # when sorting do not shuffle in dataloader ! otherwise is pointless\n",
" hparams[\"dataloader_options\"][\"shuffle\"] = False\n",
"\n",
" elif hparams[\"sorting\"] == \"descending\":\n",
" train_data = train_data.filtered_sorted(\n",
" sort_key=\"duration\",\n",
" reverse=True,\n",
" key_max_value={\"duration\": hparams[\"avoid_if_longer_than\"]},\n",
" )\n",
" # when sorting do not shuffle in dataloader ! otherwise is pointless\n",
" hparams[\"dataloader_options\"][\"shuffle\"] = False\n",
"\n",
" elif hparams[\"sorting\"] == \"random\":\n",
" pass\n",
"\n",
" else:\n",
" raise NotImplementedError(\n",
" \"sorting must be random, ascending or descending\"\n",
" )\n",
"\n",
" valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv(\n",
" csv_path=hparams[\"valid_csv\"], replacements={\"data_root\": data_folder},\n",
" )\n",
" # We also sort the validation data so it is faster to validate\n",
" valid_data = valid_data.filtered_sorted(sort_key=\"duration\")\n",
" test_datasets = {}\n",
" for csv_file in hparams[\"test_csv\"]:\n",
" name = Path(csv_file).stem\n",
" test_datasets[name] = sb.dataio.dataset.DynamicItemDataset.from_csv(\n",
" csv_path=csv_file, replacements={\"data_root\": data_folder}\n",
" )\n",
" test_datasets[name] = test_datasets[name].filtered_sorted(\n",
" sort_key=\"duration\"\n",
" )\n",
"\n",
" datasets = [train_data, valid_data] + [i for k, i in test_datasets.items()]\n",
"\n",
"\n",
" # 2. Define audio pipeline:\n",
" @sb.utils.data_pipeline.takes(\"wav\")\n",
" @sb.utils.data_pipeline.provides(\"sig\")\n",
" def audio_pipeline(wav):\n",
" info = torchaudio.info(wav)\n",
" sig = sb.dataio.dataio.read_audio(wav)\n",
" if len(sig.shape)>1 :\n",
" sig = torch.mean(sig, dim=1)\n",
" resampled = torchaudio.transforms.Resample(\n",
" info.sample_rate, hparams[\"sample_rate\"],\n",
" )(sig)\n",
" return resampled\n",
"\n",
" sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)\n",
" label_encoder = sb.dataio.encoder.CTCTextEncoder()\n",
"\n",
" # 3. Define text pipeline:\n",
" @sb.utils.data_pipeline.takes(\"wrd\")\n",
" @sb.utils.data_pipeline.provides(\n",
" \"wrd\", \"char_list\", \"tokens_list\", \"tokens\"\n",
" )\n",
" def text_pipeline(wrd):\n",
" yield wrd\n",
" char_list = list(wrd)\n",
" yield char_list\n",
" tokens_list = label_encoder.encode_sequence(char_list)\n",
" yield tokens_list\n",
" tokens = torch.LongTensor(tokens_list)\n",
" yield tokens\n",
"\n",
" sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)\n",
" lab_enc_file = os.path.join(hparams[\"save_folder\"], \"label_encoder.txt\")\n",
" special_labels = {\n",
" \"blank_label\": hparams[\"blank_index\"],\n",
" \"unk_label\": hparams[\"unk_index\"]\n",
" }\n",
" label_encoder.load_or_create(\n",
" path=lab_enc_file,\n",
" from_didatasets=[train_data],\n",
" output_key=\"char_list\",\n",
" special_labels=special_labels,\n",
" sequence_input=True,\n",
" )\n",
"\n",
" # 4. Set output:\n",
" sb.dataio.dataset.set_output_keys(\n",
" datasets, [\"id\", \"sig\", \"wrd\", \"char_list\", \"tokens\"],\n",
" )\n",
" return train_data, valid_data,test_datasets, label_encoder\n",
"\n",
"class ASR(sb.core.Brain):\n",
" def compute_forward(self, batch, stage):\n",
" \"\"\"Forward computations from the waveform batches to the output probabilities.\"\"\"\n",
"\n",
" batch = batch.to(self.device)\n",
" wavs, wav_lens = batch.sig\n",
" wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)\n",
"\n",
" if stage == sb.Stage.TRAIN:\n",
" if hasattr(self.hparams, \"augmentation\"):\n",
" wavs = self.hparams.augmentation(wavs, wav_lens)\n",
"\n",
" # Forward pass\n",
" feats = self.modules.wav2vec2(wavs, wav_lens)\n",
" x = self.modules.enc(feats)\n",
" logits = self.modules.ctc_lin(x)\n",
" p_ctc = self.hparams.log_softmax(logits)\n",
"\n",
" return p_ctc, wav_lens\n",
"\n",
" def custom_encode(self,wavs,wav_lens) :\n",
" wavs = wavs.to(\"cpu\")\n",
" if(wav_lens is not None): wav_lens.to(self.device)\n",
"\n",
" feats = self.modules.wav2vec2(wavs, wav_lens)\n",
" x = self.modules.enc(feats)\n",
" logits = self.modules.ctc_lin(x)\n",
" p_ctc = self.hparams.log_softmax(logits)\n",
"\n",
" return feats,p_ctc\n",
"\n",
"\n",
"\n",
" def compute_objectives(self, predictions, batch, stage):\n",
" \"\"\"Computes the loss (CTC) given predictions and targets.\"\"\"\n",
"\n",
" p_ctc, wav_lens = predictions\n",
"\n",
" ids = batch.id\n",
" tokens, tokens_lens = batch.tokens\n",
"\n",
" loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)\n",
"\n",
" if stage != sb.Stage.TRAIN:\n",
" predicted_tokens = sb.decoders.ctc_greedy_decode(\n",
" p_ctc, wav_lens, blank_id=self.hparams.blank_index\n",
" )\n",
" # Decode token terms to words\n",
" if self.hparams.use_language_modelling:\n",
" predicted_words = []\n",
" for logs in p_ctc:\n",
" text = decoder.decode(logs.detach().cpu().numpy())\n",
" predicted_words.append(text.split(\" \"))\n",
" else:\n",
" predicted_words = [\n",
" \"\".join(self.tokenizer.decode_ndim(utt_seq)).split(\" \")\n",
" for utt_seq in predicted_tokens\n",
" ]\n",
" # Convert indices to words\n",
" target_words = [wrd.split(\" \") for wrd in batch.wrd]\n",
"\n",
" self.wer_metric.append(ids, predicted_words, target_words)\n",
" self.cer_metric.append(ids, predicted_words, target_words)\n",
"\n",
" return loss\n",
"\n",
" def fit_batch(self, batch):\n",
" \"\"\"Train the parameters given a single batch in input\"\"\"\n",
" should_step = self.step % self.grad_accumulation_factor == 0\n",
" # Managing automatic mixed precision\n",
" # TOFIX: CTC fine-tuning currently is unstable\n",
" # This is certainly due to CTC being done in fp16 instead of fp32\n",
" if self.auto_mix_prec:\n",
" with torch.cuda.amp.autocast():\n",
" with self.no_sync():\n",
" outputs = self.compute_forward(batch, sb.Stage.TRAIN)\n",
" loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)\n",
" with self.no_sync(not should_step):\n",
" self.scaler.scale(\n",
" loss / self.grad_accumulation_factor\n",
" ).backward()\n",
" if should_step:\n",
"\n",
" if not self.hparams.wav2vec2.freeze:\n",
" self.scaler.unscale_(self.wav2vec_optimizer)\n",
" self.scaler.unscale_(self.model_optimizer)\n",
" if self.check_gradients(loss):\n",
" if not self.hparams.wav2vec2.freeze:\n",
" if self.optimizer_step >= self.hparams.warmup_steps:\n",
" self.scaler.step(self.wav2vec_optimizer)\n",
" self.scaler.step(self.model_optimizer)\n",
" self.scaler.update()\n",
" self.zero_grad()\n",
" self.optimizer_step += 1\n",
" else:\n",
" # This is mandatory because HF models have a weird behavior with DDP\n",
" # on the forward pass\n",
" with self.no_sync():\n",
" outputs = self.compute_forward(batch, sb.Stage.TRAIN)\n",
"\n",
" loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)\n",
"\n",
" with self.no_sync(not should_step):\n",
" (loss / self.grad_accumulation_factor).backward()\n",
" if should_step:\n",
" if self.check_gradients(loss):\n",
" if not self.hparams.wav2vec2.freeze:\n",
" if self.optimizer_step >= self.hparams.warmup_steps:\n",
" self.wav2vec_optimizer.step()\n",
" self.model_optimizer.step()\n",
" self.zero_grad()\n",
" self.optimizer_step += 1\n",
"\n",
" self.on_fit_batch_end(batch, outputs, loss, should_step)\n",
" return loss.detach().cpu()\n",
"\n",
" def evaluate_batch(self, batch, stage):\n",
" \"\"\"Computations needed for validation/test batches\"\"\"\n",
" predictions = self.compute_forward(batch, stage=stage)\n",
" with torch.no_grad():\n",
" loss = self.compute_objectives(predictions, batch, stage=stage)\n",
" return loss.detach()\n",
"\n",
" def on_stage_start(self, stage, epoch):\n",
" \"\"\"Gets called at the beginning of each epoch\"\"\"\n",
" if stage != sb.Stage.TRAIN:\n",
" self.cer_metric = self.hparams.cer_computer()\n",
" self.wer_metric = self.hparams.error_rate_computer()\n",
"\n",
" def on_stage_end(self, stage, stage_loss, epoch):\n",
" \"\"\"Gets called at the end of an epoch.\"\"\"\n",
" # Compute/store important stats\n",
" stage_stats = {\"loss\": stage_loss}\n",
" if stage == sb.Stage.TRAIN:\n",
" self.train_stats = stage_stats\n",
" else:\n",
" stage_stats[\"CER\"] = self.cer_metric.summarize(\"error_rate\")\n",
" stage_stats[\"WER\"] = self.wer_metric.summarize(\"error_rate\")\n",
"\n",
" # Perform end-of-iteration things, like annealing, logging, etc.\n",
" if stage == sb.Stage.VALID:\n",
" old_lr_model, new_lr_model = self.hparams.lr_annealing_model(\n",
" stage_stats[\"loss\"]\n",
" )\n",
" old_lr_wav2vec, new_lr_wav2vec = self.hparams.lr_annealing_wav2vec(\n",
" stage_stats[\"loss\"]\n",
" )\n",
" sb.nnet.schedulers.update_learning_rate(\n",
" self.model_optimizer, new_lr_model\n",
" )\n",
" if not self.hparams.wav2vec2.freeze:\n",
" sb.nnet.schedulers.update_learning_rate(\n",
" self.wav2vec_optimizer, new_lr_wav2vec\n",
" )\n",
" self.hparams.train_logger.log_stats(\n",
" stats_meta={\n",
" \"epoch\": epoch,\n",
" \"lr_model\": old_lr_model,\n",
" \"lr_wav2vec\": old_lr_wav2vec,\n",
" },\n",
" train_stats=self.train_stats,\n",
" valid_stats=stage_stats,\n",
" )\n",
" self.checkpointer.save_and_keep_only(\n",
" meta={\"WER\": stage_stats[\"WER\"]}, min_keys=[\"WER\"],\n",
" )\n",
" elif stage == sb.Stage.TEST:\n",
" self.hparams.train_logger.log_stats(\n",
" stats_meta={\"Epoch loaded\": self.hparams.epoch_counter.current},\n",
" test_stats=stage_stats,\n",
" )\n",
" with open(self.hparams.wer_file, \"w\") as w:\n",
" self.wer_metric.write_stats(w)\n",
"\n",
" def init_optimizers(self):\n",
" \"Initializes the wav2vec2 optimizer and model optimizer\"\n",
"\n",
" # If the wav2vec encoder is unfrozen, we create the optimizer\n",
" if not self.hparams.wav2vec2.freeze:\n",
" self.wav2vec_optimizer = self.hparams.wav2vec_opt_class(\n",
" self.modules.wav2vec2.parameters()\n",
" )\n",
" if self.checkpointer is not None:\n",
" self.checkpointer.add_recoverable(\n",
" \"wav2vec_opt\", self.wav2vec_optimizer\n",
" )\n",
"\n",
" self.model_optimizer = self.hparams.model_opt_class(\n",
" self.hparams.model.parameters()\n",
" )\n",
"\n",
" if self.checkpointer is not None:\n",
" self.checkpointer.add_recoverable(\"modelopt\", self.model_optimizer)\n",
"\n",
" def zero_grad(self, set_to_none=False):\n",
" if not self.hparams.wav2vec2.freeze:\n",
" self.wav2vec_optimizer.zero_grad(set_to_none)\n",
" self.model_optimizer.zero_grad(set_to_none)\n",
"\n",
"\n",
"from speechbrain.pretrained import EncoderASR,EncoderDecoderASR\n",
"french_asr_model = EncoderASR.from_hparams(source=\"asr-wav2vec2-commonvoice-fr\", savedir=\"pretrained_models/asr-wav2vec2-commonvoice-fr\").cuda()\n",
"french_asr_model.to(\"cpu\")\n",
"cvhparams_file, cvrun_opts, cvoverrides = sb.parse_arguments([\"EnglishCV/train_en_with_wav2vec.yaml\"])\n",
"with open(cvhparams_file) as cvfin:\n",
" cvhparams = load_hyperpyyaml(cvfin, cvoverrides)\n",
"english_asr_model = ASRCV(\n",
" modules=cvhparams[\"modules\"],\n",
" hparams=cvhparams,\n",
" run_opts=cvrun_opts,\n",
" checkpointer=cvhparams[\"checkpointer\"],\n",
" )\n",
"english_asr_model.modules.to(\"cpu\")\n",
"english_asr_model.checkpointer.recover_if_possible()\n",
"asr_brain = ASR(\n",
" modules=hparams[\"modules\"],\n",
" hparams=hparams,\n",
" run_opts=run_opts,\n",
" checkpointer=hparams[\"checkpointer\"],\n",
")\n",
"asr_brain.modules.to(\"cpu\")\n",
"asr_brain.checkpointer.recover_if_possible()\n",
"asr_brain.modules.eval()\n",
"english_asr_model.modules.eval()\n",
"french_asr_model.mods.eval()\n",
"asr_brain.modules.to(\"cpu\")\n",
"\n",
"# Commented out IPython magic to ensure Python compatibility.\n",
"# %ls\n",
"\n",
"#UTILS FUNCTIOJNS\n",
"def get_size_dimensions(arr):\n",
" size_dimensions = []\n",
" while isinstance(arr, list):\n",
" size_dimensions.append(len(arr))\n",
" arr = arr[0]\n",
" return size_dimensions\n",
"\n",
"def scale_array(batch,n):\n",
" scaled_batch = []\n",
"\n",
" for array in batch:\n",
" if(n < len(array)): raise ValueError(\"Cannot scale Array down\")\n",
"\n",
" repeat = round(n/len(array))+1\n",
" scaled_length_array= []\n",
"\n",
" for i in array:\n",
" for j in range(repeat) :\n",
" if(len(scaled_length_array) == n): break\n",
" scaled_length_array.append(i)\n",
"\n",
" scaled_batch.append(scaled_length_array)\n",
"\n",
" return torch.tensor(scaled_batch)\n",
"\n",
"\n",
"def load_paths(wavs_path):\n",
" waveforms = []\n",
" for path in wavs_path :\n",
" waveform, _ = torchaudio.load(path)\n",
" waveforms.append(waveform.squeeze(0))\n",
" # normalize array length to the bigger arrays by pading with 0's\n",
" padded_arrays = pad_sequence(waveforms, batch_first=True)\n",
" return torch.tensor(padded_arrays)\n",
"\n",
"\n",
"\n",
"device = 'cuda'\n",
"verbose = 0\n",
"#FLOW LEVEL FUNCTIONS\n",
"def merge_strategy(embeddings1, embeddings2, embeddings3,post1, post2,post3):\n",
"\n",
"\n",
" post1 = post1.to(device)\n",
" post2 = post2.to(device)\n",
" post3 = post3.to(device)\n",
" embeddings1 = embeddings1.to(device)\n",
" embeddings2 = embeddings2.to(device)\n",
" embeddings3 = embeddings3.to(device)\n",
"\n",
" posteriograms_merged = torch.cat((post1,post2,post3),dim=2)\n",
" embeddings_merged = torch.cat((embeddings1,embeddings2,embeddings3),dim=2)\n",
"\n",
" if(verbose !=0):\n",
" print('MERGED POST ',posteriograms_merged.shape)\n",
" print('MERGED emb ',embeddings_merged.shape)\n",
"\n",
" return torch.cat((posteriograms_merged,embeddings_merged),dim=2).to(device)\n",
"\n",
"def decode(model,wavs,wav_lens):\n",
"\n",
" with torch.no_grad():\n",
" wav_lens = wav_lens.to(model.device)\n",
" encoder_out = model.encode_batch(wavs, wav_lens)\n",
" predictions = model.decoding_function(encoder_out, wav_lens)\n",
" return predictions\n",
"\n",
"def middle_layer(batch, lens):\n",
"\n",
" tn_embeddings, tn_posteriogram = asr_brain.custom_encode(batch,None)\n",
"\n",
" fr_embeddings = french_asr_model.mods.encoder.wav2vec2(batch)\n",
" fr_posteriogram =french_asr_model.encode_batch(batch,lens)\n",
" en_embeddings = english_asr_model.modules.wav2vec2(batch, lens)\n",
" x = english_asr_model.modules.enc(en_embeddings)\n",
" en_posteriogram = english_asr_model.modules.ctc_lin(x)\n",
" #scores, en_posteriogram = english_asr_model.mods.decoder(en_embeddings ,lens)\n",
" if(verbose !=0):\n",
" print('[EMBEDDINGS] FR:',fr_embeddings.shape, \"EN:\",en_embeddings.shape, \"TN:\", tn_embeddings.shape)\n",
" print('[POSTERIOGRAM] FR:',fr_posteriogram.shape, \"EN:\",en_posteriogram.shape,\"TN:\",tn_posteriogram.shape)\n",
"\n",
"\n",
" bilangual_sample = merge_strategy(fr_embeddings,en_embeddings,tn_embeddings,fr_posteriogram,en_posteriogram,tn_posteriogram)\n",
" return bilangual_sample\n",
"\n",
"class Mixer(sb.core.Brain):\n",
"\n",
" def compute_forward(self, batch, stage):\n",
" \"\"\"Forward computations from the waveform batches to the output probabilities.\"\"\"\n",
" wavs, wav_lens = batch.sig\n",
" wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)\n",
"\n",
" if stage == sb.Stage.TRAIN:\n",
" if hasattr(self.hparams, \"augmentation\"):\n",
" wavs = self.hparams.augmentation(wavs, wav_lens)\n",
"\n",
" multi_langual_feats = middle_layer(wavs, wav_lens)\n",
" multi_langual_feats= multi_langual_feats.to(device)\n",
" feats, _ = self.modules.enc(multi_langual_feats)\n",
" logits = self.modules.ctc_lin(feats)\n",
" p_ctc = self.hparams.log_softmax(logits)\n",
" \n",
" if stage!= sb.Stage.TRAIN:\n",
" p_tokens = sb.decoders.ctc_greedy_decode(\n",
" p_ctc, wav_lens, blank_id=self.hparams.blank_index\n",
" )\n",
" else : \n",
" p_tokens = None\n",
" return p_ctc, wav_lens, p_tokens\n",
" \n",
" \n",
" def treat_wav(self,sig):\n",
" multi_langual_feats = middle_layer(sig.to(\"cpu\"), torch.tensor([1]).to(\"cpu\"))\n",
" multi_langual_feats= multi_langual_feats.to(device)\n",
" feats, _ = self.modules.enc(multi_langual_feats)\n",
" logits = self.modules.ctc_lin(feats)\n",
" p_ctc = self.hparams.log_softmax(logits)\n",
" predicted_words =[]\n",
" for logs in p_ctc:\n",
" text = decoder.decode(logs.detach().cpu().numpy())\n",
" predicted_words.append(text.split(\" \"))\n",
" return \" \".join(predicted_words[0])\n",
" \n",
"\n",
" def compute_objectives(self, predictions, batch, stage):\n",
" \"\"\"Computes the loss (CTC) given predictions and targets.\"\"\"\n",
"\n",
" p_ctc, wav_lens , predicted_tokens= predictions\n",
"\n",
" ids = batch.id\n",
" tokens, tokens_lens = batch.tokens\n",
"\n",
" loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)\n",
"\n",
"\n",
" if stage == sb.Stage.VALID:\n",
" predicted_words = [\n",
" \"\".join(self.tokenizer.decode_ndim(utt_seq)).split(\" \")\n",
" for utt_seq in predicted_tokens\n",
" ]\n",
" target_words = [wrd.split(\" \") for wrd in batch.wrd]\n",
" self.wer_metric.append(ids, predicted_words, target_words)\n",
" self.cer_metric.append(ids, predicted_words, target_words)\n",
" if stage ==sb.Stage.TEST : \n",
" if self.hparams.language_modelling:\n",
" predicted_words = []\n",
" for logs in p_ctc:\n",
" text = decoder.decode(logs.detach().cpu().numpy())\n",
" predicted_words.append(text.split(\" \"))\n",
" else : \n",
" predicted_words = [\n",
" \"\".join(self.tokenizer.decode_ndim(utt_seq)).split(\" \")\n",
" for utt_seq in predicted_tokens\n",
" ]\n",
"\n",
" target_words = [wrd.split(\" \") for wrd in batch.wrd]\n",
" self.wer_metric.append(ids, predicted_words, target_words)\n",
" self.cer_metric.append(ids, predicted_words, target_words)\n",
"\n",
" return loss\n",
"\n",
" def fit_batch(self, batch):\n",
" \"\"\"Train the parameters given a single batch in input\"\"\"\n",
" should_step = self.step % self.grad_accumulation_factor == 0\n",
" # Managing automatic mixed precision\n",
" # TOFIX: CTC fine-tuning currently is unstable\n",
" # This is certainly due to CTC being done in fp16 instead of fp32\n",
" if self.auto_mix_prec:\n",
" with torch.cuda.amp.autocast():\n",
" with self.no_sync():\n",
" outputs = self.compute_forward(batch, sb.Stage.TRAIN)\n",
" loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)\n",
" with self.no_sync(not should_step):\n",
" self.scaler.scale(\n",
" loss / self.grad_accumulation_factor\n",
" ).backward()\n",
" if should_step:\n",
"\n",
"\n",
" self.scaler.unscale_(self.model_optimizer)\n",
" if self.check_gradients(loss):\n",
" self.scaler.step(self.model_optimizer)\n",
" self.scaler.update()\n",
" self.zero_grad()\n",
" self.optimizer_step += 1\n",
" else:\n",
" # This is mandatory because HF models have a weird behavior with DDP\n",
" # on the forward pass\n",
" with self.no_sync():\n",
" outputs = self.compute_forward(batch, sb.Stage.TRAIN)\n",
"\n",
" loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)\n",
"\n",
" with self.no_sync(not should_step):\n",
" (loss / self.grad_accumulation_factor).backward()\n",
" if should_step:\n",
" if self.check_gradients(loss):\n",
" self.model_optimizer.step()\n",
" self.zero_grad()\n",
" self.optimizer_step += 1\n",
"\n",
" self.on_fit_batch_end(batch, outputs, loss, should_step)\n",
" return loss.detach().cpu()\n",
"\n",
" def evaluate_batch(self, batch, stage):\n",
" \"\"\"Computations needed for validation/test batches\"\"\"\n",
" predictions = self.compute_forward(batch, stage=stage)\n",
" with torch.no_grad():\n",
" loss = self.compute_objectives(predictions, batch, stage=stage)\n",
" return loss.detach()\n",
"\n",
" def on_stage_start(self, stage, epoch):\n",
" \"\"\"Gets called at the beginning of each epoch\"\"\"\n",
" if stage != sb.Stage.TRAIN:\n",
" self.cer_metric = self.hparams.cer_computer()\n",
" self.wer_metric = self.hparams.error_rate_computer()\n",
"\n",
" def on_stage_end(self, stage, stage_loss, epoch):\n",
" \"\"\"Gets called at the end of an epoch.\"\"\"\n",
" # Compute/store important stats\n",
" stage_stats = {\"loss\": stage_loss}\n",
" if stage == sb.Stage.TRAIN:\n",
" self.train_stats = stage_stats\n",
" else:\n",
" stage_stats[\"CER\"] = self.cer_metric.summarize(\"error_rate\")\n",
" stage_stats[\"WER\"] = self.wer_metric.summarize(\"error_rate\")\n",
"\n",
" # Perform end-of-iteration things, like annealing, logging, etc.\n",
" if stage == sb.Stage.VALID:\n",
" old_lr_model, new_lr_model = self.hparams.lr_annealing_model(\n",
" stage_stats[\"loss\"]\n",
" )\n",
" sb.nnet.schedulers.update_learning_rate(\n",
" self.model_optimizer, new_lr_model\n",
" )\n",
" self.hparams.train_logger.log_stats(\n",
" stats_meta={\n",
" \"epoch\": epoch,\n",
" \"lr_model\": old_lr_model,\n",
" },\n",
" train_stats=self.train_stats,\n",
" valid_stats=stage_stats,\n",
" )\n",
" self.checkpointer.save_and_keep_only(\n",
" meta={\"WER\": stage_stats[\"WER\"]}, min_keys=[\"WER\"],\n",
" )\n",
" elif stage == sb.Stage.TEST:\n",
" self.hparams.train_logger.log_stats(\n",
" stats_meta={\"Epoch loaded\": self.hparams.epoch_counter.current},\n",
" test_stats=stage_stats,\n",
" )\n",
" with open(self.hparams.wer_file, \"w\") as w:\n",
" self.wer_metric.write_stats(w)\n",
"\n",
" def init_optimizers(self):\n",
"\n",
" self.model_optimizer = self.hparams.model_opt_class(\n",
" self.hparams.model.parameters()\n",
" )\n",
"\n",
" if self.checkpointer is not None:\n",
" self.checkpointer.add_recoverable(\"modelopt\", self.model_optimizer)\n",
"\n",
" def zero_grad(self, set_to_none=False):\n",
"\n",
" self.model_optimizer.zero_grad(set_to_none)\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"speechbrain.utils.distributed - distributed_launch flag is disabled, this experiment will be executed without DDP.\n",
"speechbrain.core - Beginning experiment!\n",
"speechbrain.core - Experiment folder: results/non_semi_final_stac\n",
"speechbrain.dataio.encoder - Load called, but CTCTextEncoder is not empty. Loaded data will overwrite everything. This is normal if there is e.g. an unk label defined at init.\n",
"pyctcdecode.decoder - Using arpa instead of binary LM file, decoder instantiation might be slow.\n",
"pyctcdecode.alphabet - Alphabet determined to be of regular style.\n",
"pyctcdecode.alphabet - Unigrams and labels don't seem to agree.\n",
"speechbrain.core - Info: auto_mix_prec arg from hparam file is used\n",
"speechbrain.core - 60.1M trainable parameters in Mixer\n",
"pyctcdecode.decoder - Using arpa instead of binary LM file, decoder instantiation might be slow.\n",
"pyctcdecode.alphabet - Alphabet determined to be of regular style.\n",
"pyctcdecode.alphabet - Unigrams and labels don't seem to agree.\n",
"speechbrain.utils.checkpoints - Loading a checkpoint from TunisianASR/semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"<ipython-input-26-84a6e2d9fce8>:119: GradioDeprecationWarning: `optional` parameter is deprecated, and it has no effect\n",
" inputs=[gr.Audio(source=\"microphone\", type='filepath', label = \"record\", optional = True),\n",
"<ipython-input-26-84a6e2d9fce8>:120: GradioDeprecationWarning: `optional` parameter is deprecated, and it has no effect\n",
" gr.Audio(source=\"upload\", type='filepath', label=\"filein\", optional=True)]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/salah/anaconda3/envs/salah/lib/python3.8/site-packages/gradio/processing_utils.py:188: UserWarning: Trying to convert audio automatically from int32 to 16-bit int format.\n",
" warnings.warn(warning.format(data.dtype))\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[ 0.0000, 0.0000, 0.0000, ..., 0.0075, -0.0042, -0.0031]])\n",
"tensor([[ 0.0000e+00, 0.0000e+00, 0.0000e+00, ..., 3.0518e-05,\n",
" -3.0518e-05, 0.0000e+00]])\n"
]
}
],
"source": [
"hparams_file, run_opts, overrides = sb.parse_arguments([\"cs.yaml\"])\n",
"\n",
"# If distributed_launch=True then\n",
"# create ddp_group with the right communication protocol\n",
"sb.utils.distributed.ddp_init_group(run_opts)\n",
"\n",
"with open(hparams_file) as fin:\n",
" hparams = load_hyperpyyaml(fin, overrides)\n",
"\n",
"# Create experiment directory\n",
"sb.create_experiment_directory(\n",
" experiment_directory=hparams[\"output_folder\"],\n",
" hyperparams_to_save=hparams_file,\n",
" overrides=overrides,\n",
")\n",
"def read_labels_file(labels_file):\n",
" with open(labels_file, \"r\",encoding=\"utf-8\") as lf:\n",
" lines = lf.read().splitlines()\n",
" division = \"===\"\n",
" numbers = {}\n",
" for line in lines :\n",
" if division in line :\n",
" break\n",
" string, number = line.split(\"=>\")\n",
" number = int(number)\n",
" string = string[1:-2]\n",
" numbers[number] = string\n",
" return [numbers[x] for x in range(len(numbers))]\n",
"\n",
"label_encoder = sb.dataio.encoder.CTCTextEncoder()\n",
"\n",
"lab_enc_file = os.path.join(hparams[\"save_folder\"], \"label_encoder.txt\")\n",
"special_labels = {\n",
" \"blank_label\": hparams[\"blank_index\"],\n",
" \"unk_label\": hparams[\"unk_index\"]\n",
"}\n",
"label_encoder.load_or_create(\n",
" path=lab_enc_file,\n",
" from_didatasets=[[]],\n",
" output_key=\"char_list\",\n",
" special_labels=special_labels,\n",
" sequence_input=True,\n",
")\n",
"\n",
"\n",
"labels = read_labels_file(os.path.join(hparams[\"save_folder\"], \"label_encoder.txt\"))\n",
"labels = [\"\"] + labels[1:-1] + [\"1\"] \n",
"if hparams[\"language_modelling\"]:\n",
" decoder = build_ctcdecoder(\n",
" labels,\n",
" kenlm_model_path=hparams[\"ngram_lm_path\"], # either .arpa or .bin file\n",
" alpha=0.5, # tuned on a val set\n",
" beta=1, # tuned on a val set\n",
" )\n",
"\n",
"\n",
"\n",
"\n",
"mixer = Mixer(\n",
" modules=hparams[\"modules\"],\n",
" hparams=hparams,\n",
" run_opts=run_opts,\n",
" checkpointer=hparams[\"checkpointer\"],\n",
")\n",
"mixer.tokenizer = label_encoder\n",
"\n",
"\n",
"label_encoder = sb.dataio.encoder.CTCTextEncoder()\n",
"\n",
"\n",
"# We dynamicaly add the tokenizer to our brain class.\n",
"# NB: This tokenizer corresponds to the one used for the LM!!\n",
"\n",
"decoder = build_ctcdecoder(\n",
" labels,\n",
" kenlm_model_path= \"arpas/everything.arpa\", # either .arpa or .bin file\n",
" alpha=0.5, # tuned on a val set\n",
" beta=1, # tuned on a val set\n",
")\n",
"\n",
"run_opts[\"device\"]=\"cpu\"\n",
"\n",
"\n",
"device = \"cpu\"\n",
"mixer.device= \"cpu\"\n",
"mixer.modules.to(\"cpu\")\n",
"\n",
"from enum import Enum, auto\n",
"class Stage(Enum):\n",
" TRAIN = auto()\n",
" VALID = auto()\n",
" TEST = auto()\n",
"\n",
"asr_brain.on_evaluate_start()\n",
"asr_brain.modules.eval()\n",
"\n",
"\n",
"import gradio as gr\n",
"\n",
"def treat_wav_file(file_mic,file_upload ,asr=mixer, device=\"cpu\") :\n",
" if (file_mic is not None) and (file_upload is not None):\n",
" warn_output = \"WARNING: You've uploaded an audio file and used the microphone. The recorded file from the microphone will be used and the uploaded audio will be discarded.\\n\"\n",
" wav = file_mic\n",
" elif (file_mic is None) and (file_upload is None):\n",
" return \"ERROR: You have to either use the microphone or upload an audio file\"\n",
" elif file_mic is not None:\n",
" wav = file_mic\n",
" else:\n",
" wav = file_upload\n",
" sig, sr = torchaudio.load(wav)\n",
" tensor_wav = sig.to(device)\n",
" resampled = torchaudio.functional.resample( tensor_wav, sr, 16000)\n",
" sentence = asr.treat_wav(resampled)\n",
" return sentence\n",
"\n",
"gr.Interface(\n",
" fn=treat_wav_file, \n",
" inputs=[gr.Audio(source=\"microphone\", type='filepath', label = \"record\", optional = True), \n",
" gr.Audio(source=\"upload\", type='filepath', label=\"filein\", optional=True)]\n",
" ,outputs=\"text\").launch(share= False, debug = True)\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|