File size: 33,182 Bytes
be0d478 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
---
base_model: microsoft/mpnet-base
datasets:
- SwastikN/sxc_med_llm_chemical_gen
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:117502
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Help me make the molecule CC(=O)OC[C@H](OC(C)=O)C(=O)N1CCCC[C@H]1C1CCN(C(=O)c2cc3ccccc3n2C)CC1
with the same hydrogen bond donors. The output molecule should be similar to the
input molecule. Please inform me of the number of hydrogen bond donor(s) of the
optimized molecule.
sentences:
- Your requirements guided the optimization, resulting in the molecule "CC(=O)OC(CCl)C(Cc1cccs1)[C@H](OC(C)=O)C(=O)N1CCCC[C@H]1C1CCN(C(=O)c2cc3ccccc3n2C)CC1"
with an approximate hydrogen bond donor(s) of 0.
- Given a molecule expressed in SMILES string, help me optimize it according to
my requirements.
- Help me adapt a molecular structure denoted in SMILES string based on my preferences.
- source_sentence: How can we modify the molecule CCC(CC)=C(CC)c1ccccc1OC(=O)OC(N=[N+]=[N-])c1ccccc1
to decrease its blood-brain barrier penetration (BBBP) value while keeping it
similar to the input molecule? Please inform me of the BBBP value of the optimized
molecule.
sentences:
- Describe a technology used for measuring people's emotional responses.
- I've successfully optimized the molecule according to your needs, resulting in
"CCOC(=O)c1ccccc1OC(=O)OC(N=[N+]=[N-])c1ccccc1" with an approximate BBBP value
of 0.71.
- Given a molecule expressed in SMILES string, help me optimize it according to
my requirements.
- source_sentence: How can we modify the molecule C/C(=C/C(=O)N1CC[C@H](CC(CCCCCC(CO)C(=O)O)NC(=O)OC(C)(C)C)[C@H]1c1cccnc1)C(=O)O
to increase its blood-brain barrier penetration (BBBP) value while keeping it
similar to the input molecule?
sentences:
- Given a molecule expressed in SMILES string, help me optimize it according to
my requirements.
- Aid me in refining a molecular structure written in SMILES notation based on my
criteria.
- Taking your requirements into account, I've optimized the molecule to "C/C(=C/C(=O)N1CC[C@H](CNC(=O)[C@H](CO)NC(=O)OC(C)(C)C)[C@H]1c1cccnc1)C(=O)O".
- source_sentence: Support me in transforming the molecule [SMILES] by incorporating
the same hydrogen bond acceptors and maintaining its resemblance to the original
molecule.
sentences:
- Taking your requirements into account, I've optimized the molecule to "CCOc1cccc(C2c3c(oc4ccc(C)cc4c3=O)C(=O)N2CCN(CC)CC)c1".
- Help me adapt a molecular structure denoted in SMILES string based on my preferences.
- Help me adapt a molecular structure denoted in SMILES string based on my preferences.
- source_sentence: With a molecule represented by the SMILES string CNNNCC(=O)N[C@H](C)C[C@@H](C)NCc1ccc2c(c1)CCC2,
propose adjustments that can increase its logP value while keeping the output
molecule structurally related to the input molecule.
sentences:
- Aid me in refining a molecular structure written in SMILES notation based on my
criteria.
- Given a molecule expressed in SMILES string, help me optimize it according to
my requirements.
- In line with your criteria, I've optimized the molecule and present it as "C[C@H](C[C@@H](C)NC(=O)COC(C)(C)C)NCc1ccc2c(c1)CCC2".
model-index:
- name: MPNet base trained on AllNLI triplets
results:
- task:
type: triplet
name: Triplet
dataset:
name: all nli dev
type: all-nli-dev
metrics:
- type: cosine_accuracy
value: 0.6562222222222223
name: Cosine Accuracy
- type: dot_accuracy
value: 0.5342222222222223
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.7075555555555556
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.6584444444444445
name: Euclidean Accuracy
- type: max_accuracy
value: 0.7075555555555556
name: Max Accuracy
- type: cosine_accuracy
value: 0.9804444444444445
name: Cosine Accuracy
- type: dot_accuracy
value: 0.01888888888888889
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.9811111111111112
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.9802222222222222
name: Euclidean Accuracy
- type: max_accuracy
value: 0.9811111111111112
name: Max Accuracy
---
# MPNet base trained on AllNLI triplets
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co./microsoft/mpnet-base) on the [sxc_med_llm_chemical_gen](https://huggingface.co./datasets/SwastikN/sxc_med_llm_chemical_gen) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/mpnet-base](https://huggingface.co./microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [sxc_med_llm_chemical_gen](https://huggingface.co./datasets/SwastikN/sxc_med_llm_chemical_gen)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Saideepthi55/sentencetransformer-ft")
# Run inference
sentences = [
'With a molecule represented by the SMILES string CNNNCC(=O)N[C@H](C)C[C@@H](C)NCc1ccc2c(c1)CCC2, propose adjustments that can increase its logP value while keeping the output molecule structurally related to the input molecule.',
'Given a molecule expressed in SMILES string, help me optimize it according to my requirements.',
'In line with your criteria, I\'ve optimized the molecule and present it as "C[C@H](C[C@@H](C)NC(=O)COC(C)(C)C)NCc1ccc2c(c1)CCC2".',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Triplet
* Dataset: `all-nli-dev`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| cosine_accuracy | 0.6562 |
| dot_accuracy | 0.5342 |
| manhattan_accuracy | 0.7076 |
| euclidean_accuracy | 0.6584 |
| **max_accuracy** | **0.7076** |
#### Triplet
* Dataset: `all-nli-dev`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| cosine_accuracy | 0.9804 |
| dot_accuracy | 0.0189 |
| manhattan_accuracy | 0.9811 |
| euclidean_accuracy | 0.9802 |
| **max_accuracy** | **0.9811** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### sxc_med_llm_chemical_gen
* Dataset: [sxc_med_llm_chemical_gen](https://huggingface.co./datasets/SwastikN/sxc_med_llm_chemical_gen) at [ae28874](https://huggingface.co./datasets/SwastikN/sxc_med_llm_chemical_gen/tree/ae28874de7084969f9aa310b357ac699dbbafa23)
* Size: 117,502 training samples
* Columns: <code>input</code>, <code>instruction</code>, and <code>output</code>
* Approximate statistics based on the first 1000 samples:
| | input | instruction | output |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 2 tokens</li><li>mean: 50.03 tokens</li><li>max: 156 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.19 tokens</li><li>max: 69 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 67.94 tokens</li><li>max: 321 tokens</li></ul> |
* Samples:
| input | instruction | output |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code></code> | <code>List the countries of the Middle East</code> | <code>Egypt, Israel, Iran, Iraq, Jordan, Kuwait, Lebanon, Qatar, Saudi Arabia, Syria, Turkey, The United Arab Emirates, Oman, and Yemen.</code> |
| <code>Support me in refining the molecule CCC(C)=C(CC)c1ccc(Nc2nc3nonc3nc2N2CCC(Oc3ccc(Cl)cc3)CC2)cc1 to have a more drug-like nature, ensuring it remains close to the input molecule. Please inform me of the QED value of the optimized molecule.</code> | <code>Help me adapt a molecular structure denoted in SMILES string based on my preferences.</code> | <code>I've optimized the molecule according to your requirements, yielding the structure "COC(=O)c1ccc(Nc2nc3nonc3nc2N2CCC(Oc3ccc(Cl)cc3)CC2)cc1" and an estimated QED value of 0.4.</code> |
| <code></code> | <code>Create a social media strategy to attract followers on Twitter.</code> | <code>The social media strategy for Twitter should involve Tweeting on a regular basis, with content that is engaging and relevant to the target audience. This can include retweetable quotes, links to videos and articles, sharing photos/images, polls, and so on. It is also beneficial for the information to include hashtags relevant to the content and any relevant topics of the industry. <br><br>It is also important to leverage Twitter influencers and accounts, as well as engaging with potential followers regularly and DM them when necessary. Additionally, running campaigns, contests and giveaways to gain more followers should also be part of the strategy. Finally, hashtag research should be conducted to increase the reach of the tweets.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### sxc_med_llm_chemical_gen
* Dataset: [sxc_med_llm_chemical_gen](https://huggingface.co./datasets/SwastikN/sxc_med_llm_chemical_gen) at [ae28874](https://huggingface.co./datasets/SwastikN/sxc_med_llm_chemical_gen/tree/ae28874de7084969f9aa310b357ac699dbbafa23)
* Size: 4,500 evaluation samples
* Columns: <code>input</code>, <code>instruction</code>, and <code>output</code>
* Approximate statistics based on the first 1000 samples:
| | input | instruction | output |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 2 tokens</li><li>mean: 68.49 tokens</li><li>max: 165 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.89 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 69.16 tokens</li><li>max: 205 tokens</li></ul> |
* Samples:
| input | instruction | output |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>With a molecule represented by the SMILES string COc1ccc(CN(C(=O)Nc2ccc([C@H](C#N)c3ccccc3)c(Cl)c2)C2CC2)cc1, propose adjustments that can decrease its blood-brain barrier permeability (BBBP) value by at least 0.1 compared to the pre-optimized value while keeping the output molecule structurally related to the input molecule. Please inform me of the BBBP value of the optimized molecule.</code> | <code>Help me adapt a molecular structure denoted in SMILES string based on my preferences.</code> | <code>I've optimized the molecule according to your requirements, yielding the structure "CC(C)c1cccc(Oc2ccc(CN(C(=O)Nc3ccc([C@H](C#N)c4ccccc4)c(Cl)c3)C3CC3)cc2)c1" and an estimated BBBP value of 0.34.</code> |
| <code>Which modifications can be applied to the molecule Cc1nn(-c2cc3cc(F)ccc3s2)c2ncc(C(=O)N3CCCC3c3nnc4n3CCCCC4)cc12 to increase its water solubility value while ensuring it remains similar to the original molecule?</code> | <code>Aid me in refining a molecular structure written in SMILES notation based on my criteria.</code> | <code>I've optimized the molecule according to your requirements, resulting in the following structure: "Cc1nn(C)c2ncc(C(=O)N3CCCC3c3nnc4n3CCCCC4)cc12".</code> |
| <code></code> | <code>Describe the benefits of having a mentor.</code> | <code>Having a mentor can provide tremendous benefits, including guidance, advice, support and connection to a network of contacts. Mentors can offer valuable feedback, help to create goals and strategies, and provide the accountability necessary to carry out the desired goals. They can also provide a fresh perspective which can help to create new ideas and solutions.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | loss | all-nli-dev_max_accuracy |
|:------:|:----:|:-------------:|:------:|:------------------------:|
| 0 | 0 | - | - | 0.7076 |
| 0.0174 | 64 | - | - | 0.7156 |
| 0.0068 | 100 | 2.7336 | 2.6486 | 0.7524 |
| 0.0136 | 200 | 2.4965 | 1.9213 | 0.8162 |
| 0.0204 | 300 | 1.9042 | 1.7761 | 0.822 |
| 0.0272 | 400 | 1.6856 | 1.7172 | 0.8371 |
| 0.0340 | 500 | 1.6117 | 1.6916 | 0.8507 |
| 0.0408 | 600 | 1.5673 | 1.6809 | 0.8976 |
| 0.0477 | 700 | 1.5984 | 1.7052 | 0.9329 |
| 0.0545 | 800 | 1.5828 | 1.6841 | 0.9391 |
| 0.0613 | 900 | 1.5375 | 1.6534 | 0.9267 |
| 0.0681 | 1000 | 1.5561 | 1.6619 | 0.9509 |
| 0.0749 | 1100 | 1.4911 | 1.6538 | 0.9556 |
| 0.0817 | 1200 | 1.5075 | 1.6498 | 0.966 |
| 0.0885 | 1300 | 1.4722 | 1.6468 | 0.946 |
| 0.0953 | 1400 | 1.4806 | 1.6981 | 0.9631 |
| 0.1021 | 1500 | 1.4788 | 1.6335 | 0.9662 |
| 0.1089 | 1600 | 1.4668 | 1.6668 | 0.9731 |
| 0.1157 | 1700 | 1.4383 | 1.6473 | 0.9711 |
| 0.1225 | 1800 | 1.4549 | 1.6462 | 0.9713 |
| 0.1294 | 1900 | 1.4394 | 1.6184 | 0.9718 |
| 0.1362 | 2000 | 1.3861 | 1.6156 | 0.9676 |
| 0.1430 | 2100 | 1.4111 | 1.6045 | 0.9711 |
| 0.1498 | 2200 | 1.4286 | 1.6056 | 0.9782 |
| 0.1566 | 2300 | 1.4669 | 1.6174 | 0.9764 |
| 0.1634 | 2400 | 1.3761 | 1.6182 | 0.9776 |
| 0.1702 | 2500 | 1.4119 | 1.6150 | 0.9738 |
| 0.1770 | 2600 | 1.3625 | 1.5984 | 0.9776 |
| 0.1838 | 2700 | 1.3726 | 1.6092 | 0.9807 |
| 0.1906 | 2800 | 1.3265 | 1.6059 | 0.9789 |
| 0.1974 | 2900 | 1.3925 | 1.6004 | 0.978 |
| 0.2042 | 3000 | 1.3524 | 1.5964 | 0.9773 |
| 0.2111 | 3100 | 1.342 | 1.6213 | 0.9787 |
| 0.2179 | 3200 | 1.3478 | 1.6016 | 0.9822 |
| 0.2247 | 3300 | 1.3888 | 1.6038 | 0.9793 |
| 0.2315 | 3400 | 1.3328 | 1.5977 | 0.9813 |
| 0.2383 | 3500 | 1.372 | 1.6114 | 0.9824 |
| 0.2451 | 3600 | 1.3046 | 1.6082 | 0.9824 |
| 0.2519 | 3700 | 1.3857 | 1.5922 | 0.9824 |
| 0.2587 | 3800 | 1.3236 | 1.6127 | 0.9809 |
| 0.2655 | 3900 | 1.2929 | 1.5935 | 0.9824 |
| 0.2723 | 4000 | 1.3889 | 1.6047 | 0.9831 |
| 0.2791 | 4100 | 1.3509 | 1.6030 | 0.9844 |
| 0.2859 | 4200 | 1.3455 | 1.6099 | 0.9824 |
| 0.2928 | 4300 | 1.337 | 1.5939 | 0.984 |
| 0.2996 | 4400 | 1.3302 | 1.6057 | 0.9827 |
| 0.3064 | 4500 | 1.3377 | 1.6254 | 0.9833 |
| 0.3132 | 4600 | 1.3221 | 1.6020 | 0.9849 |
| 0.3200 | 4700 | 1.3209 | 1.6146 | 0.9824 |
| 0.3268 | 4800 | 1.354 | 1.6022 | 0.9824 |
| 0.3336 | 4900 | 1.3213 | 1.6136 | 0.9822 |
| 0.3404 | 5000 | 1.3484 | 1.5920 | 0.9807 |
| 0.3472 | 5100 | 1.3412 | 1.6106 | 0.978 |
| 0.3540 | 5200 | 1.3532 | 1.6001 | 0.9784 |
| 0.3608 | 5300 | 1.2984 | 1.6192 | 0.9762 |
| 0.3676 | 5400 | 1.3621 | 1.5850 | 0.98 |
| 0.3745 | 5500 | 1.2839 | 1.6158 | 0.9807 |
| 0.3813 | 5600 | 1.3664 | 1.6030 | 0.9831 |
| 0.3881 | 5700 | 1.327 | 1.6168 | 0.9822 |
| 0.3949 | 5800 | 1.3123 | 1.6040 | 0.982 |
| 0.4017 | 5900 | 1.3019 | 1.6092 | 0.9824 |
| 0.4085 | 6000 | 1.3908 | 1.5935 | 0.9829 |
| 0.4153 | 6100 | 1.3136 | 1.5916 | 0.9791 |
| 0.4221 | 6200 | 1.32 | 1.6091 | 0.9807 |
| 0.4289 | 6300 | 1.3018 | 1.6052 | 0.9827 |
| 0.4357 | 6400 | 1.3144 | 1.6083 | 0.9816 |
| 0.4425 | 6500 | 1.2865 | 1.6015 | 0.9829 |
| 0.4493 | 6600 | 1.2946 | 1.5882 | 0.9818 |
| 0.4562 | 6700 | 1.3245 | 1.5949 | 0.9824 |
| 0.4630 | 6800 | 1.3278 | 1.6081 | 0.9831 |
| 0.4698 | 6900 | 1.2842 | 1.6086 | 0.9836 |
| 0.4766 | 7000 | 1.3231 | 1.6170 | 0.9811 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |