File size: 33,182 Bytes
be0d478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
---
base_model: microsoft/mpnet-base
datasets:
- SwastikN/sxc_med_llm_chemical_gen
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:117502
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Help me make the molecule CC(=O)OC[C@H](OC(C)=O)C(=O)N1CCCC[C@H]1C1CCN(C(=O)c2cc3ccccc3n2C)CC1
    with the same hydrogen bond donors. The output molecule should be similar to the
    input molecule. Please inform me of the number of hydrogen bond donor(s) of the
    optimized molecule.
  sentences:
  - Your requirements guided the optimization, resulting in the molecule "CC(=O)OC(CCl)C(Cc1cccs1)[C@H](OC(C)=O)C(=O)N1CCCC[C@H]1C1CCN(C(=O)c2cc3ccccc3n2C)CC1"
    with an approximate hydrogen bond donor(s) of 0.
  - Given a molecule expressed in SMILES string, help me optimize it according to
    my requirements.
  - Help me adapt a molecular structure denoted in SMILES string based on my preferences.
- source_sentence: How can we modify the molecule CCC(CC)=C(CC)c1ccccc1OC(=O)OC(N=[N+]=[N-])c1ccccc1
    to decrease its blood-brain barrier penetration (BBBP) value while keeping it
    similar to the input molecule? Please inform me of the BBBP value of the optimized
    molecule.
  sentences:
  - Describe a technology used for measuring people's emotional responses.
  - I've successfully optimized the molecule according to your needs, resulting in
    "CCOC(=O)c1ccccc1OC(=O)OC(N=[N+]=[N-])c1ccccc1" with an approximate BBBP value
    of 0.71.
  - Given a molecule expressed in SMILES string, help me optimize it according to
    my requirements.
- source_sentence: How can we modify the molecule C/C(=C/C(=O)N1CC[C@H](CC(CCCCCC(CO)C(=O)O)NC(=O)OC(C)(C)C)[C@H]1c1cccnc1)C(=O)O
    to increase its blood-brain barrier penetration (BBBP) value while keeping it
    similar to the input molecule?
  sentences:
  - Given a molecule expressed in SMILES string, help me optimize it according to
    my requirements.
  - Aid me in refining a molecular structure written in SMILES notation based on my
    criteria.
  - Taking your requirements into account, I've optimized the molecule to "C/C(=C/C(=O)N1CC[C@H](CNC(=O)[C@H](CO)NC(=O)OC(C)(C)C)[C@H]1c1cccnc1)C(=O)O".
- source_sentence: Support me in transforming the molecule [SMILES] by incorporating
    the same hydrogen bond acceptors and maintaining its resemblance to the original
    molecule.
  sentences:
  - Taking your requirements into account, I've optimized the molecule to "CCOc1cccc(C2c3c(oc4ccc(C)cc4c3=O)C(=O)N2CCN(CC)CC)c1".
  - Help me adapt a molecular structure denoted in SMILES string based on my preferences.
  - Help me adapt a molecular structure denoted in SMILES string based on my preferences.
- source_sentence: With a molecule represented by the SMILES string CNNNCC(=O)N[C@H](C)C[C@@H](C)NCc1ccc2c(c1)CCC2,
    propose adjustments that can increase its logP value while keeping the output
    molecule structurally related to the input molecule.
  sentences:
  - Aid me in refining a molecular structure written in SMILES notation based on my
    criteria.
  - Given a molecule expressed in SMILES string, help me optimize it according to
    my requirements.
  - In line with your criteria, I've optimized the molecule and present it as "C[C@H](C[C@@H](C)NC(=O)COC(C)(C)C)NCc1ccc2c(c1)CCC2".
model-index:
- name: MPNet base trained on AllNLI triplets
  results:
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: all nli dev
      type: all-nli-dev
    metrics:
    - type: cosine_accuracy
      value: 0.6562222222222223
      name: Cosine Accuracy
    - type: dot_accuracy
      value: 0.5342222222222223
      name: Dot Accuracy
    - type: manhattan_accuracy
      value: 0.7075555555555556
      name: Manhattan Accuracy
    - type: euclidean_accuracy
      value: 0.6584444444444445
      name: Euclidean Accuracy
    - type: max_accuracy
      value: 0.7075555555555556
      name: Max Accuracy
    - type: cosine_accuracy
      value: 0.9804444444444445
      name: Cosine Accuracy
    - type: dot_accuracy
      value: 0.01888888888888889
      name: Dot Accuracy
    - type: manhattan_accuracy
      value: 0.9811111111111112
      name: Manhattan Accuracy
    - type: euclidean_accuracy
      value: 0.9802222222222222
      name: Euclidean Accuracy
    - type: max_accuracy
      value: 0.9811111111111112
      name: Max Accuracy
---

# MPNet base trained on AllNLI triplets

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co./microsoft/mpnet-base) on the [sxc_med_llm_chemical_gen](https://huggingface.co./datasets/SwastikN/sxc_med_llm_chemical_gen) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/mpnet-base](https://huggingface.co./microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [sxc_med_llm_chemical_gen](https://huggingface.co./datasets/SwastikN/sxc_med_llm_chemical_gen)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Saideepthi55/sentencetransformer-ft")
# Run inference
sentences = [
    'With a molecule represented by the SMILES string CNNNCC(=O)N[C@H](C)C[C@@H](C)NCc1ccc2c(c1)CCC2, propose adjustments that can increase its logP value while keeping the output molecule structurally related to the input molecule.',
    'Given a molecule expressed in SMILES string, help me optimize it according to my requirements.',
    'In line with your criteria, I\'ve optimized the molecule and present it as "C[C@H](C[C@@H](C)NC(=O)COC(C)(C)C)NCc1ccc2c(c1)CCC2".',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Triplet
* Dataset: `all-nli-dev`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric             | Value      |
|:-------------------|:-----------|
| cosine_accuracy    | 0.6562     |
| dot_accuracy       | 0.5342     |
| manhattan_accuracy | 0.7076     |
| euclidean_accuracy | 0.6584     |
| **max_accuracy**   | **0.7076** |

#### Triplet
* Dataset: `all-nli-dev`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric             | Value      |
|:-------------------|:-----------|
| cosine_accuracy    | 0.9804     |
| dot_accuracy       | 0.0189     |
| manhattan_accuracy | 0.9811     |
| euclidean_accuracy | 0.9802     |
| **max_accuracy**   | **0.9811** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### sxc_med_llm_chemical_gen

* Dataset: [sxc_med_llm_chemical_gen](https://huggingface.co./datasets/SwastikN/sxc_med_llm_chemical_gen) at [ae28874](https://huggingface.co./datasets/SwastikN/sxc_med_llm_chemical_gen/tree/ae28874de7084969f9aa310b357ac699dbbafa23)
* Size: 117,502 training samples
* Columns: <code>input</code>, <code>instruction</code>, and <code>output</code>
* Approximate statistics based on the first 1000 samples:
  |         | input                                                                              | instruction                                                                       | output                                                                             |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            | string                                                                             |
  | details | <ul><li>min: 2 tokens</li><li>mean: 50.03 tokens</li><li>max: 156 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.19 tokens</li><li>max: 69 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 67.94 tokens</li><li>max: 321 tokens</li></ul> |
* Samples:
  | input                                                                                                                                                                                                                                                       | instruction                                                                                        | output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code></code>                                                                                                                                                                                                                                               | <code>List the countries of the Middle East</code>                                                 | <code>Egypt, Israel, Iran, Iraq, Jordan, Kuwait, Lebanon, Qatar, Saudi Arabia, Syria, Turkey, The United Arab Emirates, Oman, and Yemen.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
  | <code>Support me in refining the molecule CCC(C)=C(CC)c1ccc(Nc2nc3nonc3nc2N2CCC(Oc3ccc(Cl)cc3)CC2)cc1 to have a more drug-like nature, ensuring it remains close to the input molecule. Please inform me of the QED value of the optimized molecule.</code> | <code>Help me adapt a molecular structure denoted in SMILES string based on my preferences.</code> | <code>I've optimized the molecule according to your requirements, yielding the structure "COC(=O)c1ccc(Nc2nc3nonc3nc2N2CCC(Oc3ccc(Cl)cc3)CC2)cc1" and an estimated QED value of 0.4.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
  | <code></code>                                                                                                                                                                                                                                               | <code>Create a social media strategy to attract followers on Twitter.</code>                       | <code>The social media strategy for Twitter should involve Tweeting on a regular basis, with content that is engaging and relevant to the target audience. This can include retweetable quotes, links to videos and articles, sharing photos/images, polls, and so on. It is also beneficial for the information to include hashtags relevant to the content and any relevant topics of the industry. <br><br>It is also important to leverage Twitter influencers and accounts, as well as engaging with potential followers regularly and DM them when necessary. Additionally, running campaigns, contests and giveaways to gain more followers should also be part of the strategy. Finally, hashtag research should be conducted to increase the reach of the tweets.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Evaluation Dataset

#### sxc_med_llm_chemical_gen

* Dataset: [sxc_med_llm_chemical_gen](https://huggingface.co./datasets/SwastikN/sxc_med_llm_chemical_gen) at [ae28874](https://huggingface.co./datasets/SwastikN/sxc_med_llm_chemical_gen/tree/ae28874de7084969f9aa310b357ac699dbbafa23)
* Size: 4,500 evaluation samples
* Columns: <code>input</code>, <code>instruction</code>, and <code>output</code>
* Approximate statistics based on the first 1000 samples:
  |         | input                                                                              | instruction                                                                       | output                                                                             |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            | string                                                                             |
  | details | <ul><li>min: 2 tokens</li><li>mean: 68.49 tokens</li><li>max: 165 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.89 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 69.16 tokens</li><li>max: 205 tokens</li></ul> |
* Samples:
  | input                                                                                                                                                                                                                                                                                                                                                                                                              | instruction                                                                                            | output                                                                                                                                                                                                                                                                                                                                                                                    |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>With a molecule represented by the SMILES string COc1ccc(CN(C(=O)Nc2ccc([C@H](C#N)c3ccccc3)c(Cl)c2)C2CC2)cc1, propose adjustments that can decrease its blood-brain barrier permeability (BBBP) value by at least 0.1 compared to the pre-optimized value while keeping the output molecule structurally related to the input molecule. Please inform me of the BBBP value of the optimized molecule.</code> | <code>Help me adapt a molecular structure denoted in SMILES string based on my preferences.</code>     | <code>I've optimized the molecule according to your requirements, yielding the structure "CC(C)c1cccc(Oc2ccc(CN(C(=O)Nc3ccc([C@H](C#N)c4ccccc4)c(Cl)c3)C3CC3)cc2)c1" and an estimated BBBP value of 0.34.</code>                                                                                                                                                                          |
  | <code>Which modifications can be applied to the molecule Cc1nn(-c2cc3cc(F)ccc3s2)c2ncc(C(=O)N3CCCC3c3nnc4n3CCCCC4)cc12 to increase its water solubility value while ensuring it remains similar to the original molecule?</code>                                                                                                                                                                                   | <code>Aid me in refining a molecular structure written in SMILES notation based on my criteria.</code> | <code>I've optimized the molecule according to your requirements, resulting in the following structure: "Cc1nn(C)c2ncc(C(=O)N3CCCC3c3nnc4n3CCCCC4)cc12".</code>                                                                                                                                                                                                                           |
  | <code></code>                                                                                                                                                                                                                                                                                                                                                                                                      | <code>Describe the benefits of having a mentor.</code>                                                 | <code>Having a mentor can provide tremendous benefits, including guidance, advice, support and connection to a network of contacts. Mentors can offer valuable feedback, help to create goals and strategies, and provide the accountability necessary to carry out the desired goals. They can also provide a fresh perspective which can help to create new ideas and solutions.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | loss   | all-nli-dev_max_accuracy |
|:------:|:----:|:-------------:|:------:|:------------------------:|
| 0      | 0    | -             | -      | 0.7076                   |
| 0.0174 | 64   | -             | -      | 0.7156                   |
| 0.0068 | 100  | 2.7336        | 2.6486 | 0.7524                   |
| 0.0136 | 200  | 2.4965        | 1.9213 | 0.8162                   |
| 0.0204 | 300  | 1.9042        | 1.7761 | 0.822                    |
| 0.0272 | 400  | 1.6856        | 1.7172 | 0.8371                   |
| 0.0340 | 500  | 1.6117        | 1.6916 | 0.8507                   |
| 0.0408 | 600  | 1.5673        | 1.6809 | 0.8976                   |
| 0.0477 | 700  | 1.5984        | 1.7052 | 0.9329                   |
| 0.0545 | 800  | 1.5828        | 1.6841 | 0.9391                   |
| 0.0613 | 900  | 1.5375        | 1.6534 | 0.9267                   |
| 0.0681 | 1000 | 1.5561        | 1.6619 | 0.9509                   |
| 0.0749 | 1100 | 1.4911        | 1.6538 | 0.9556                   |
| 0.0817 | 1200 | 1.5075        | 1.6498 | 0.966                    |
| 0.0885 | 1300 | 1.4722        | 1.6468 | 0.946                    |
| 0.0953 | 1400 | 1.4806        | 1.6981 | 0.9631                   |
| 0.1021 | 1500 | 1.4788        | 1.6335 | 0.9662                   |
| 0.1089 | 1600 | 1.4668        | 1.6668 | 0.9731                   |
| 0.1157 | 1700 | 1.4383        | 1.6473 | 0.9711                   |
| 0.1225 | 1800 | 1.4549        | 1.6462 | 0.9713                   |
| 0.1294 | 1900 | 1.4394        | 1.6184 | 0.9718                   |
| 0.1362 | 2000 | 1.3861        | 1.6156 | 0.9676                   |
| 0.1430 | 2100 | 1.4111        | 1.6045 | 0.9711                   |
| 0.1498 | 2200 | 1.4286        | 1.6056 | 0.9782                   |
| 0.1566 | 2300 | 1.4669        | 1.6174 | 0.9764                   |
| 0.1634 | 2400 | 1.3761        | 1.6182 | 0.9776                   |
| 0.1702 | 2500 | 1.4119        | 1.6150 | 0.9738                   |
| 0.1770 | 2600 | 1.3625        | 1.5984 | 0.9776                   |
| 0.1838 | 2700 | 1.3726        | 1.6092 | 0.9807                   |
| 0.1906 | 2800 | 1.3265        | 1.6059 | 0.9789                   |
| 0.1974 | 2900 | 1.3925        | 1.6004 | 0.978                    |
| 0.2042 | 3000 | 1.3524        | 1.5964 | 0.9773                   |
| 0.2111 | 3100 | 1.342         | 1.6213 | 0.9787                   |
| 0.2179 | 3200 | 1.3478        | 1.6016 | 0.9822                   |
| 0.2247 | 3300 | 1.3888        | 1.6038 | 0.9793                   |
| 0.2315 | 3400 | 1.3328        | 1.5977 | 0.9813                   |
| 0.2383 | 3500 | 1.372         | 1.6114 | 0.9824                   |
| 0.2451 | 3600 | 1.3046        | 1.6082 | 0.9824                   |
| 0.2519 | 3700 | 1.3857        | 1.5922 | 0.9824                   |
| 0.2587 | 3800 | 1.3236        | 1.6127 | 0.9809                   |
| 0.2655 | 3900 | 1.2929        | 1.5935 | 0.9824                   |
| 0.2723 | 4000 | 1.3889        | 1.6047 | 0.9831                   |
| 0.2791 | 4100 | 1.3509        | 1.6030 | 0.9844                   |
| 0.2859 | 4200 | 1.3455        | 1.6099 | 0.9824                   |
| 0.2928 | 4300 | 1.337         | 1.5939 | 0.984                    |
| 0.2996 | 4400 | 1.3302        | 1.6057 | 0.9827                   |
| 0.3064 | 4500 | 1.3377        | 1.6254 | 0.9833                   |
| 0.3132 | 4600 | 1.3221        | 1.6020 | 0.9849                   |
| 0.3200 | 4700 | 1.3209        | 1.6146 | 0.9824                   |
| 0.3268 | 4800 | 1.354         | 1.6022 | 0.9824                   |
| 0.3336 | 4900 | 1.3213        | 1.6136 | 0.9822                   |
| 0.3404 | 5000 | 1.3484        | 1.5920 | 0.9807                   |
| 0.3472 | 5100 | 1.3412        | 1.6106 | 0.978                    |
| 0.3540 | 5200 | 1.3532        | 1.6001 | 0.9784                   |
| 0.3608 | 5300 | 1.2984        | 1.6192 | 0.9762                   |
| 0.3676 | 5400 | 1.3621        | 1.5850 | 0.98                     |
| 0.3745 | 5500 | 1.2839        | 1.6158 | 0.9807                   |
| 0.3813 | 5600 | 1.3664        | 1.6030 | 0.9831                   |
| 0.3881 | 5700 | 1.327         | 1.6168 | 0.9822                   |
| 0.3949 | 5800 | 1.3123        | 1.6040 | 0.982                    |
| 0.4017 | 5900 | 1.3019        | 1.6092 | 0.9824                   |
| 0.4085 | 6000 | 1.3908        | 1.5935 | 0.9829                   |
| 0.4153 | 6100 | 1.3136        | 1.5916 | 0.9791                   |
| 0.4221 | 6200 | 1.32          | 1.6091 | 0.9807                   |
| 0.4289 | 6300 | 1.3018        | 1.6052 | 0.9827                   |
| 0.4357 | 6400 | 1.3144        | 1.6083 | 0.9816                   |
| 0.4425 | 6500 | 1.2865        | 1.6015 | 0.9829                   |
| 0.4493 | 6600 | 1.2946        | 1.5882 | 0.9818                   |
| 0.4562 | 6700 | 1.3245        | 1.5949 | 0.9824                   |
| 0.4630 | 6800 | 1.3278        | 1.6081 | 0.9831                   |
| 0.4698 | 6900 | 1.2842        | 1.6086 | 0.9836                   |
| 0.4766 | 7000 | 1.3231        | 1.6170 | 0.9811                   |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->