--- language: - sr license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_0 - google/fleurs - Sagicc/audio-lmb-ds - classla/ParlaSpeech-RS metrics: - wer model-index: - name: Whisper Base Sr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13 type: mozilla-foundation/common_voice_16_0 config: sr split: test args: sr metrics: - name: Wer type: wer value: 0.27887672200635816 --- # Whisper Base Sr This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co./openai/whisper-base). It achieves the following results on the evaluation set: - Loss: 0.3129 - Wer Ortho: 0.3801 - Wer: 0.2789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.4839 | 0.03 | 500 | 0.4684 | 0.5407 | 0.4170 | | 0.4084 | 0.05 | 1000 | 0.3948 | 0.4578 | 0.3559 | | 0.3873 | 0.08 | 1500 | 0.3690 | 0.4276 | 0.3260 | | 0.3562 | 0.11 | 2000 | 0.3450 | 0.4129 | 0.3117 | | 0.3233 | 0.13 | 2500 | 0.3293 | 0.3935 | 0.2912 | | 0.313 | 0.16 | 3000 | 0.3232 | 0.3887 | 0.2861 | | 0.3062 | 0.19 | 3500 | 0.3158 | 0.3866 | 0.2851 | | 0.3154 | 0.22 | 4000 | 0.3129 | 0.3801 | 0.2789 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.0.1+cu117 - Datasets 2.16.1 - Tokenizers 0.15.1