File size: 2,267 Bytes
f4c521d
6cf1884
 
8707984
 
 
 
 
 
 
6cf1884
f4c521d
 
8707984
 
f4c521d
7d46eb3
 
8707984
f4c521d
6cf1884
8707984
7d46eb3
 
f4c521d
8707984
f4c521d
8707984
f4c521d
8707984
f4c521d
8707984
f4c521d
8707984
f4c521d
8707984
f4c521d
8707984
f4c521d
8707984
f4c521d
8707984
 
 
 
 
 
 
 
 
 
 
f4c521d
8707984
f4c521d
8707984
 
7d46eb3
 
 
 
 
f4c521d
 
8707984
f4c521d
6cf1884
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
base_model: google/vit-base-patch16-224-in21k
library_name: peft
license: apache-2.0
metrics:
- accuracy
tags:
- generated_from_trainer
model-index:
- name: vit-base-patch16-224-in21k-finetuned-lora-food101
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/saeid93/huggingface/runs/2ghiy1dr)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/saeid93/huggingface/runs/2ghiy1dr)
# vit-base-patch16-224-in21k-finetuned-lora-food101

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1403
- Accuracy: 0.95

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 9    | 0.6670          | 0.864    |
| 2.2303        | 2.0   | 18   | 0.2156          | 0.93     |
| 0.3942        | 3.0   | 27   | 0.1582          | 0.956    |
| 0.2467        | 4.0   | 36   | 0.1474          | 0.948    |
| 0.1852        | 5.0   | 45   | 0.1403          | 0.95     |


### Framework versions

- PEFT 0.11.2.dev0
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1