--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: BERT-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9449011330815374 - name: Recall type: recall value: 0.9515605772457769 - name: F1 type: f1 value: 0.9482191628114375 - name: Accuracy type: accuracy value: 0.987243236373457 --- # BERT-ner This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0664 - Precision: 0.9449 - Recall: 0.9516 - F1: 0.9482 - Accuracy: 0.9872 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0252 | 1.0 | 878 | 0.0652 | 0.9414 | 0.9419 | 0.9417 | 0.9854 | | 0.0121 | 2.0 | 1756 | 0.0615 | 0.9407 | 0.9498 | 0.9452 | 0.9867 | | 0.0079 | 3.0 | 2634 | 0.0664 | 0.9449 | 0.9516 | 0.9482 | 0.9872 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3