# Fine-tuning SIGMA ## Original Implementation The implementation of our SIGMA supports **multi-node distributed training**. We provide the **off-the-shelf** scripts in the [scripts folder](scripts). - For example, to fine-tune SIGMA ViT-Base on **Something-Something V2** with 64 GPUs (8 nodes x 8 GPUs), you can run ```bash OUTPUT_DIR='YOUR_PATH/ssv2_SIGMA_pretrain_base_patch16_224_frame_16x2_tube_mask_ratio_0.9_e800/eval_lr_5e-4_epoch_50' DATA_PATH='YOUR_PATH/list_ssv2' MODEL_PATH='YOUR_PATH/ssv2_SIGMA_pretrain_base_patch16_224_frame_16x2_tube_mask_ratio_0.9_e800/checkpoint-799.pth' OMP_NUM_THREADS=1 python -m torch.distributed.launch --nproc_per_node=8 \ --master_port 12320 --nnodes=8 \ --node_rank=0 --master_addr=$ip_node_0 \ run_class_finetuning.py \ --model vit_base_patch16_224 \ --data_set SSV2 \ --nb_classes 174 \ --data_path ${DATA_PATH} \ --finetune ${MODEL_PATH} \ --log_dir ${OUTPUT_DIR} \ --output_dir ${OUTPUT_DIR} \ --batch_size 8 \ --num_sample 1 \ --input_size 224 \ --short_side_size 224 \ --save_ckpt_freq 10 \ --num_frames 16 \ --opt adamw \ --lr 5e-4 \ --opt_betas 0.9 0.999 \ --weight_decay 0.05 \ --epochs 50 \ --dist_eval \ --test_num_segment 2 \ --test_num_crop 3 \ --enable_deepspeed ``` on the first node. On other nodes, run the same command with `--node_rank 1`, ..., `--node_rank 7` respectively. `--master_addr` is set as the ip of the node 0. - For example, to fine-tune SIGMA ViT-Base on **Kinetics400** with 64 GPUs (8 nodes x 8 GPUs), you can run ```bash OUTPUT_DIR='YOUR_PATH/k400_SIGMA_pretrain_base_patch16_224_frame_16x4_tube_mask_ratio_0.9_e800/eval_lr_1e-3_epoch_100' DATA_PATH='YOUR_PATH/list_kinetics-400' MODEL_PATH='YOUR_PATH/k400_SIGMA_pretrain_base_patch16_224_frame_16x4_tube_mask_ratio_0.9_e800/checkpoint-799.pth' OMP_NUM_THREADS=1 python -m torch.distributed.launch --nproc_per_node=8 \ --master_port 12320 --nnodes=8 \ --node_rank=0 --master_addr=$ip_node_0 \ run_class_finetuning.py \ --model vit_base_patch16_224 \ --data_set Kinetics-400 \ --nb_classes 400 \ --data_path ${DATA_PATH} \ --finetune ${MODEL_PATH} \ --log_dir ${OUTPUT_DIR} \ --output_dir ${OUTPUT_DIR} \ --batch_size 8 \ --num_sample 1 \ --input_size 224 \ --short_side_size 224 \ --save_ckpt_freq 10 \ --num_frames 16 \ --sampling_rate 4 \ --opt adamw \ --lr 1e-3 \ --opt_betas 0.9 0.999 \ --weight_decay 0.05 \ --epochs 100 \ --dist_eval \ --test_num_segment 5 \ --test_num_crop 3 \ --enable_deepspeed ``` on the first node. On other nodes, run the same command with `--node_rank 1`, ..., `--node_rank 7` respectively. `--master_addr` is set as the ip of the node 0. ### Note: - We perform the **I3D dense sampling** on **Kinetics400** and **uniform sampling** on **Something-Something V2**, respectively. - We didn't use `cls token` in our implementation, and directly average the feature of last layer for video classification. - Here total batch size = (`batch_size` per gpu) x `nodes` x (gpus per node). - `lr` here is the base learning rate. The ` actual lr` is computed by the [linear scaling rule](https://arxiv.org/abs/1706.02677): `` actual lr`` = `lr` * total batch size / 256. ## Slurm To help the community to reproduce our results on slurm cluster, we also provide the the **off-the-shelf** script. For example, to fine-tune SIGMA ViT-Base on **Kinetics400** with 64 GPUs (8 nodes x 8 GPUs), you can run: ```bash export MASTER_PORT=$((12000 + $RANDOM % 20000)) export OMP_NUM_THREADS=1 OUTPUT_DIR='YOUR_PATH/k400_SIGMA_pretrain_base_patch16_224_frame_16x4_tube_mask_ratio_0.9_e800/eval_lr_1e-3_epoch_100' DATA_PATH='YOUR_PATH/list_kinetics-400' MODEL_PATH='YOUR_PATH/k400_SIGMA_pretrain_base_patch16_224_frame_16x4_tube_mask_ratio_0.9_e800/checkpoint-799.pth' JOB_NAME=$1 PARTITION=${PARTITION:-"video"} # 8 for 1 node, 16 for 2 node, etc. GPUS=${GPUS:-64} GPUS_PER_NODE=${GPUS_PER_NODE:-8} CPUS_PER_TASK=${CPUS_PER_TASK:-8} SRUN_ARGS=${SRUN_ARGS:-""} PY_ARGS=${@:2} # batch_size can be adjusted according to the graphics card srun -p $PARTITION \ --job-name=${JOB_NAME} \ --gres=gpu:${GPUS_PER_NODE} \ --ntasks=${GPUS} \ --ntasks-per-node=${GPUS_PER_NODE} \ --cpus-per-task=${CPUS_PER_TASK} \ --kill-on-bad-exit=1 \ ${SRUN_ARGS} \ python -u run_class_finetuning.py \ --model vit_base_patch16_224 \ --data_set Kinetics-400 \ --nb_classes 400 \ --data_path ${DATA_PATH} \ --finetune ${MODEL_PATH} \ --log_dir ${OUTPUT_DIR} \ --output_dir ${OUTPUT_DIR} \ --batch_size 8 \ --num_sample 1 \ --input_size 224 \ --short_side_size 224 \ --save_ckpt_freq 10 \ --num_frames 16 \ --sampling_rate 4 \ --opt adamw \ --lr 1e-3 \ --opt_betas 0.9 0.999 \ --weight_decay 0.05 \ --epochs 100 \ --dist_eval \ --test_num_segment 5 \ --test_num_crop 3 \ --enable_deepspeed \ ${PY_ARGS} ```