File size: 7,897 Bytes
0a08778 6d9bbcd 42c6ca3 0a08778 6d9bbcd 0a08778 6d9bbcd 0a08778 c322688 214dc6b 6d9bbcd 0a08778 214dc6b 6d9bbcd c322688 dc1b6cf 0a08778 6d9bbcd 0a08778 6d9bbcd 0a08778 af311fa 6d9bbcd 0a08778 6d9bbcd 0a08778 6d9bbcd 0a08778 6d9bbcd 0a08778 6d9bbcd 0a08778 6d9bbcd 0a08778 8ba6760 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
---
library_name: transformers
license: cc-by-nc-4.0
datasets:
- kyujinpy/KOR-OpenOrca-Platypus-v3
language:
- ko
- en
tags:
- Economic
- Finance
base_model: EleutherAI/polyglot-ko-5.8b
---
# Model Details
Model Developers: Sogang University SGEconFinlab(<<https://sc.sogang.ac.kr/aifinlab/>)
### Model Description
This model is a language model specialized in economics and finance. This was learned with various economic/finance-related data.
The data sources are listed below, and we are not releasing the data that we trained on because it was used for research/policy purposes.
If you wish to use the original data, please contact the original author directly for permission to use it.
- **Developed by:** Sogang University SGEconFinlab(<https://sc.sogang.ac.kr/aifinlab/>)
- **License:** cc-by-nc-4.0
- **Base Model:** EleutherAI/polyglot-ko-5.8b(<https://huggingface.co./EleutherAI/polyglot-ko-5.8b>)
## Loading the Model
peft_model_id = "SGEcon/polyglot-ko-5.8b_fin_v4"
config = PeftConfig.from_pretrained(peft_model_id)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=bnb_config, device_map={"":0})
model = PeftModel.from_pretrained(model, peft_model_id)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
model.eval()
## Conducting Conversation
import re
def gen(x):
inputs = tokenizer(f"### ์ง๋ฌธ: {x}\n\n### ๋ต๋ณ:", return_tensors='pt', return_token_type_ids=False)
# ๋ฐ์ดํฐ๋ฅผ GPU๋ก ์ด๋(์ฌ์ฉ ๊ฐ๋ฅํ ๊ฒฝ์ฐ)
inputs = {k: v.to(device="cuda" if torch.cuda.is_available() else "cpu") for k, v in inputs.items()}
gened = model.generate(
**inputs,
max_new_tokens=256, # ์๋ก ์์ฑํ ํ ํฐ์ ์ต๋ ๊ฐ์
early_stopping=True,
num_return_sequences=1, # ํ๋์ ๋ต๋ณ๋ง ์์ฑ
do_sample=True, # ๋ค์ํ ๋ต๋ณ ์์ฑ์ ์ํด ์ํ๋ง ํ์ฑํ
eos_token_id=tokenizer.eos_token_id, # EOS ํ ํฐ ID ์ฌ์ฉ
temperature=0.9, # ์์ฑ ๋ค์์ฑ ์กฐ์ ์ ์ํ ์จ๋ ์ค์
top_p=0.8, # nucleus sampling์์ ์ฌ์ฉํ p ๊ฐ
top_k=50 # top-k sampling์์ ์ฌ์ฉํ k ๊ฐ
)
# ์์ฑ๋ ์ํ์ค๋ฅผ ๋์ฝ๋ํ์ฌ ์ถ๋ ฅ ํ
์คํธ๋ก ๋ณํ
decoded = tokenizer.decode(gened[0], skip_special_tokens=True).strip()
# "### ๋ต๋ณ:" ๋ฌธ์์ด ์ดํ์ ํ
์คํธ๋ง ์ถ์ถ
answer_start_idx = decoded.find("### ๋ต๋ณ:") + len("### ๋ต๋ณ:")
complete_answer = decoded[answer_start_idx:].strip()
# ์ฒซ ๋ฒ์งธ ๊ตฌ๋์ (. ? !)์ ์ฐพ์์ ๊ทธ ๋ถ๋ถ๊น์ง๋ง ์ถ์ถ
match = re.search(r"[\.\?\!][^\.\?\!]*$", complete_answer)
if match:
complete_answer = complete_answer[:match.end()].strip()
return complete_answer
## Training Details
- We train our model with PEFT.
PEFT is a technique that does not tune all parameters of a model during fine-tuning, but only a small subset of parameters.
By tuning only a few parameters while leaving others fixed, the model is less likely to suffer from catastrophic forgetting, where the model forgets previously learned tasks when it learns new ones.
This significantly reduces computation and storage costs.
- We use QLora to train the base model.
Quantized Low Rank Adapters (QLoRA) is an efficient technique that uses 4-bit quantized pre-trained language models to fine-tune 65 billion parameter models on a 48 GB GPU while significantly reducing memory usage.
The method uses NormalFloat 4-bit (NF4), a new data type that is theoretically optimal for normally distributed weights; Double Quantization, which further quantizes quantization constants to reduce average memory usage; and Paged Optimizers, which manage memory spikes during mini-batch processing, to increase memory efficiency without sacrificing performance.
- Also, we performed instruction tuning using the data that we collected and the kyujinpy/KOR-OpenOrca-Platypus-v3 dataset on the hugging face.
Instruction tuning is learning in a supervised learning format that uses instructions and input data together as input and output data as a pair.
In other words, instruction tuning involves fine-tuning a pre-trained model for a specific task or set of tasks, where the model is taught to follow specific instructions or guidelines.
Instruction tuning is a type of Supervised Fine-tuning (SFT) that aims to improve the generality and adaptability of a model by introducing an additional dimension that enables the model to understand and follow specific instructions.
### Training Data
1. ํ๊ตญ์ํ: ๊ฒฝ์ ๊ธ์ต์ฉ์ด 700์ (<https://www.bok.or.kr/portal/bbs/B0000249/view.do?nttId=235017&menuNo=200765>)
2. ๊ธ์ต๊ฐ๋
์: ๊ธ์ต์๋น์ ์ ๋ณด ํฌํธ ํ์ธ ๊ธ์ต์ฉ์ด์ฌ์ (<https://fine.fss.or.kr/fine/fnctip/fncDicary/list.do?menuNo=900021>)
3. KDI ๊ฒฝ์ ์ ๋ณด์ผํฐ: ์์ฌ ์ฉ์ด์ฌ์ (<https://eiec.kdi.re.kr/material/wordDic.do>)
4. ํ๊ตญ๊ฒฝ์ ์ ๋ฌธ/ํ๊ฒฝ๋ท์ปด: ํ๊ฒฝ๊ฒฝ์ ์ฉ์ด์ฌ์ (<https://terms.naver.com/list.naver?cid=42107&categoryId=42107>), ์ค๋์ TESAT(<https://www.tesat.or.kr/bbs.frm.list/tesat_study?s_cateno=1>), ์ค๋์ ์ฃผ๋์ด TESAT(<https://www.tesat.or.kr/bbs.frm.list/tesat_study?s_cateno=5>), ์๊ธ์๊ธํ๊ฒฝ(<https://sgsg.hankyung.com/tesat/study>)
5. ์ค์๋ฒค์ฒ๊ธฐ์
๋ถ/๋ํ๋ฏผ๊ตญ์ ๋ถ: ์ค์๋ฒค์ฒ๊ธฐ์
๋ถ ์ ๋ฌธ์ฉ์ด(<https://terms.naver.com/list.naver?cid=42103&categoryId=42103>)
6. ๊ณ ์ฑ์ผ/๋ฒ๋ฌธ์ถํ์ฌ: ํ๊ณยท์ธ๋ฌด ์ฉ์ด์ฌ์ (<https://terms.naver.com/list.naver?cid=51737&categoryId=51737>)
7. ๋งจํ์ ๊ฒฝ์ ํ 8ํ Word Index
8. kyujinpy/KOR-OpenOrca-Platypus-v3(<https://huggingface.co./datasets/kyujinpy/KOR-OpenOrca-Platypus-v3>)
At the request of the original author, it is not to be used for commercial purposes. Therefore, it is licensed under the license CC-BY-NC-4.0.
The copyright of the data used belongs to the original author, so please contact the original author when using it.
### Training Hyperparameters
|Hyperparameter|SGEcon/polyglot-ko-5.8b_fin_v4|
|------|---|
|Lora Method|Lora|
|load in 4 bit|True|
|learning rate|3e-4|
|lora alpa|8|
|lora rank|16|
|lora dropout|0.05|
|optim|paged_adamw_8bit|
|target_modules|query_key_value|
### Example
> ์ค์์ํ์ ์ญํ ์ ๋ํด์ ์ค๋ช
ํด์ค๋?
>> ์ค์์ํ์ ๊ตญ๊ฐ์ ์ ์ฉ์ ๊ด๋ฆฌํ๋ ์ค์ํ ์ญํ ์ ๋ด๋นํ๊ณ ์๋ค. ํนํ ๊ธ์ต์์ฅ์ ์์ ์ฑ์ ์ ์งํ๋ ๊ฒ์ด ๊ฐ์ฅ ์ค์ํ๋ค. ์ค์์ํ์ ๊ธ์ต์์ฅ์ด ๋ถ์์ ํด์ง ๊ฒฝ์ฐ ์ ๋์ฑ์ ๊ณต๊ธํ๋ ๋ฑ ๊ฒฝ์ ๊ฐ ์์ ์ ์ผ๋ก ์ด์๋๋๋ก ์ง์ํ๋ ์ญํ ์ ํ๋ค. ์ด ๊ณผ์ ์์ ํตํ๋์ด ์กฐ์ ๋๊ธฐ๋ ํ๋ค. ํ๊ตญ์ํ์ ๊ฒฝ์ฐ ์ธํ๋ณด์ ์ก์ด ์ผ์ ์์ค ์ดํ๋ก ๋จ์ด์ง๋ฉด ์ธํ์์ฅ์ ๊ฐ์
ํด ์ธํ๋ณด์ ์ก์ ๋๋ฆฌ๋ ๋ฐฉ๋ฒ์ผ๋ก ์ธํ์์ฅ์ ์์ ์ฑ์ ์ ์งํ๋ค. ๋ ํตํ๋์ด ๋๋ฌด ๋ง์ ๊ฒฝ์ฐ์๋ ๋์ ๊ฐ์น๋ฅผ ๋ฎ์ถฐ์ ํตํ๋์ ์กฐ์ ํ๋ค. ์ด๋ฐ ๋ฐฉ๋ฒ์ผ๋ก ๊ฒฝ๊ธฐ๋ฅผ ์กฐ์ ํ๊ธฐ๋ ํ๋ค. ํ๊ตญ์ํ์ ์ ์ฑ
๊ธ๋ฆฌ๊ฐ ์ค๋ฅด๋ฉด ์์ค๊ธ๋ฆฌ๊ฐ ์ค๋ฅด๊ณ ์ด๋ ๊ธฐ์
์ ๊ธ์ต๋น์ฉ์ ์ฆ๊ฐ์์ผ ๊ฒฝ๊ธฐ๋ฅผ ์์ถ์ํค๊ธฐ ๋๋ฌธ์ ํ๊ตญ์ํ์ ์ ์ฑ
๊ธ๋ฆฌ๋ฅผ ์ธํํ๋ ๋ฐฉ๋ฒ์ผ๋ก ๊ฒฝ๊ธฐ๋ฅผ ๋ถ์ํ๊ธฐ๋ ํ๋ค. ๋ ์ค์์ํ์ ๊ฒฝ์ ๊ฐ ์ด๋ ค์์ง๋ฉด ๋์ ํ์ด์ ๊ฒฝ์ ๋ฅผ ์ด๋ฆฌ๋ ์ญํ ์ ํ๊ธฐ๋ ํ๋ค. ์ฆ, ์ค์์ํ์ ๊ฒฝ๊ธฐ๊ฐ ์นจ์ฒด๋ผ ๋์ด ์ ๋์ง ์๋ ์ํฉ์ด ๋๋ฉด ์์ค์ ๋์ ํ์ด์ ๊ฒฝ๊ธฐ๋ฅผ ๋ถ์ํ๋ ๋ฐฉ๋ฒ์ผ๋ก ๊ฒฝ์ ๋ฅผ ์ด๋ฆฌ๋ ์ญํ ์ ํ๋ค.
|