Update README.md
Browse files
README.md
CHANGED
@@ -14,18 +14,10 @@ This model is a language model specialized in economics and finance. This was le
|
|
14 |
The data sources are listed below, and we are not releasing the data we trained on because it was used for research/policy purposes.
|
15 |
If you wish to use the original data rather than our training data, please contact the original author directly for permission to use it.
|
16 |
|
17 |
-
- **Developed by:**
|
18 |
-
- **Language(s) (NLP):**
|
19 |
-
- **License:**
|
20 |
-
- **Base Model:**
|
21 |
-
|
22 |
-
### Model Sources [optional]
|
23 |
-
|
24 |
-
<!-- Provide the basic links for the model. -->
|
25 |
-
|
26 |
-
- **Repository:** [More Information Needed]
|
27 |
-
- **Paper [optional]:** [More Information Needed]
|
28 |
-
- **Demo [optional]:** [More Information Needed]
|
29 |
|
30 |
## Uses
|
31 |
|
@@ -41,57 +33,57 @@ If you wish to use the original data rather than our training data, please conta
|
|
41 |
## How to Get Started with the Model
|
42 |
|
43 |
|
44 |
-
peft_model_id = "SGEcon/KoSOLAR-10.7B-v0.2_fin_v4"
|
45 |
-
config = PeftConfig.from_pretrained(peft_model_id)
|
46 |
-
bnb_config = BitsAndBytesConfig(
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
)
|
52 |
-
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=bnb_config, device_map={"":0})
|
53 |
-
model = PeftModel.from_pretrained(model, peft_model_id)
|
54 |
-
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
55 |
-
model.eval()
|
56 |
|
57 |
|
58 |
-
import re
|
59 |
-
def gen(x):
|
60 |
-
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
|
92 |
-
|
93 |
|
94 |
-
|
95 |
|
96 |
|
97 |
## Training Details
|
@@ -152,43 +144,6 @@ def gen(x):
|
|
152 |
#### Summary
|
153 |
|
154 |
|
155 |
-
|
156 |
-
## Model Examination [optional]
|
157 |
-
|
158 |
-
<!-- Relevant interpretability work for the model goes here -->
|
159 |
-
|
160 |
-
[More Information Needed]
|
161 |
-
|
162 |
-
## Environmental Impact
|
163 |
-
|
164 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
165 |
-
|
166 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
167 |
-
|
168 |
-
- **Hardware Type:** [More Information Needed]
|
169 |
-
- **Hours used:** [More Information Needed]
|
170 |
-
- **Cloud Provider:** [More Information Needed]
|
171 |
-
- **Compute Region:** [More Information Needed]
|
172 |
-
- **Carbon Emitted:** [More Information Needed]
|
173 |
-
|
174 |
-
## Technical Specifications [optional]
|
175 |
-
|
176 |
-
### Model Architecture and Objective
|
177 |
-
|
178 |
-
[More Information Needed]
|
179 |
-
|
180 |
-
### Compute Infrastructure
|
181 |
-
|
182 |
-
[More Information Needed]
|
183 |
-
|
184 |
-
#### Hardware
|
185 |
-
|
186 |
-
[More Information Needed]
|
187 |
-
|
188 |
-
#### Software
|
189 |
-
|
190 |
-
[More Information Needed]
|
191 |
-
|
192 |
## Citation [optional]
|
193 |
|
194 |
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
|
|
14 |
The data sources are listed below, and we are not releasing the data we trained on because it was used for research/policy purposes.
|
15 |
If you wish to use the original data rather than our training data, please contact the original author directly for permission to use it.
|
16 |
|
17 |
+
- **Developed by:** Sogang University SGEconFinlab
|
18 |
+
- **Language(s) (NLP):** Ko/En
|
19 |
+
- **License:** apache-2.0
|
20 |
+
- **Base Model:** yanolja/KoSOLAR-10.7B-v0.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
## Uses
|
23 |
|
|
|
33 |
## How to Get Started with the Model
|
34 |
|
35 |
|
36 |
+
peft_model_id = "SGEcon/KoSOLAR-10.7B-v0.2_fin_v4"
|
37 |
+
config = PeftConfig.from_pretrained(peft_model_id)
|
38 |
+
bnb_config = BitsAndBytesConfig(
|
39 |
+
load_in_4bit=True,
|
40 |
+
bnb_4bit_use_double_quant=True,
|
41 |
+
bnb_4bit_quant_type="nf4",
|
42 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
43 |
+
)
|
44 |
+
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=bnb_config, device_map={"":0})
|
45 |
+
model = PeftModel.from_pretrained(model, peft_model_id)
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
47 |
+
model.eval()
|
48 |
|
49 |
|
50 |
+
import re
|
51 |
+
def gen(x):
|
52 |
+
inputs = tokenizer(f"### ์ง๋ฌธ: {x}\n\n### ๋ต๋ณ:", return_tensors='pt', return_token_type_ids=False)
|
53 |
|
54 |
+
# Move data to GPU (if available)
|
55 |
+
inputs = {k: v.to(device="cuda" if torch.cuda.is_available() else "cpu") for k, v in inputs.items()}
|
56 |
+
|
57 |
+
gened = model.generate(
|
58 |
+
**inputs,
|
59 |
+
max_new_tokens=256,
|
60 |
+
early_stopping=True,
|
61 |
+
num_return_sequences=4,
|
62 |
+
do_sample=True,
|
63 |
+
eos_token_id=tokenizer.eos_token_id,
|
64 |
+
temperature=0.9,
|
65 |
+
top_p=0.8,
|
66 |
+
top_k=50
|
67 |
+
)
|
68 |
|
69 |
+
complete_answers = []
|
70 |
+
for gen_seq in gened:
|
71 |
+
decoded = tokenizer.decode(gen_seq, skip_special_tokens=True).strip()
|
72 |
+
|
73 |
+
# Extract only the text after the string "### ๋ต๋ณ:"
|
74 |
+
first_answer_start_idx = decoded.find("### ๋ต๋ณ:") + len("### ๋ต๋ณ:")
|
75 |
+
temp_answer = decoded[first_answer_start_idx:].strip()
|
76 |
+
|
77 |
+
# Extract only text up to the second "### ๋ต๋ณ:" string
|
78 |
+
second_answer_start_idx = temp_answer.find("### ๋ต๋ณ:")
|
79 |
+
if second_answer_start_idx != -1:
|
80 |
+
complete_answer = temp_answer[:second_answer_start_idx].strip()
|
81 |
+
else:
|
82 |
+
complete_answer = temp_answer # ๋ ๋ฒ์งธ "### ๋ต๋ณ:"์ด ์๋ ๊ฒฝ์ฐ ์ ์ฒด ๋ต๋ณ ๋ฐํ
|
83 |
|
84 |
+
complete_answers.append(complete_answer)
|
85 |
|
86 |
+
return complete_answers
|
87 |
|
88 |
|
89 |
## Training Details
|
|
|
144 |
#### Summary
|
145 |
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
## Citation [optional]
|
148 |
|
149 |
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|