lbourdois commited on
Commit
6dfb49d
·
1 Parent(s): 02a60ea

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -1
README.md CHANGED
@@ -2,4 +2,75 @@
2
  language:
3
  - de
4
  - cs
5
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  language:
3
  - de
4
  - cs
5
+ tags:
6
+ - translation Deustch Cszech model
7
+ datasets:
8
+ - dcep europarl jrc-acquis
9
+ widget:
10
+ - text: "17. empfiehlt die Einführung einer spezifischen Strategie zur Unterstützung neuer und demokratisch gewählter Parlamente im Hinblick auf eine dauerhafte Verankerung von Demokratie, Rechtsstaatlichkeit und guter Staatsführung;"
11
+
12
+ ---
13
+
14
+ # legal_t5_small_trans_de_cs model
15
+
16
+ Model on translating legal text from Deustch to Cszech. It was first released in
17
+ [this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep.
18
+
19
+
20
+ ## Model description
21
+
22
+ legal_t5_small_trans_de_cs is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters.
23
+
24
+ ## Intended uses & limitations
25
+
26
+ The model could be used for translation of legal texts from Deustch to Cszech.
27
+
28
+ ### How to use
29
+
30
+ Here is how to use this model to translate legal text from Deustch to Cszech in PyTorch:
31
+
32
+ ```python
33
+ from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline
34
+
35
+ pipeline = TranslationPipeline(
36
+ model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_de_cs"),
37
+ tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_de_cs", do_lower_case=False,
38
+ skip_special_tokens=True),
39
+ device=0
40
+ )
41
+
42
+ de_text = "17. empfiehlt die Einführung einer spezifischen Strategie zur Unterstützung neuer und demokratisch gewählter Parlamente im Hinblick auf eine dauerhafte Verankerung von Demokratie, Rechtsstaatlichkeit und guter Staatsführung;"
43
+
44
+ pipeline([de_text], max_length=512)
45
+ ```
46
+
47
+ ## Training data
48
+
49
+ The legal_t5_small_trans_de_cs model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts.
50
+
51
+ ## Training procedure
52
+
53
+ The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training.
54
+
55
+ ### Preprocessing
56
+
57
+ An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model.
58
+
59
+ ### Pretraining
60
+
61
+
62
+
63
+ ## Evaluation results
64
+
65
+ When the model is used for translation test dataset, achieves the following results:
66
+
67
+ Test results :
68
+
69
+ | Model | BLEU score |
70
+ |:-----:|:-----:|
71
+ | legal_t5_small_trans_de_cs | 44.07|
72
+
73
+
74
+ ### BibTeX entry and citation info
75
+
76
+ > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)