Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,186 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
# Model Card for Model ID
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: llama3.1
|
4 |
+
datasets:
|
5 |
+
- thesven/Reflective-MAGLLAMA-v0.1
|
6 |
+
base_model:
|
7 |
+
- arcee-ai/Llama-3.1-SuperNova-Lite
|
8 |
+
model-index:
|
9 |
+
- name: Llama-3.1-SuperNova-Lite-Reflections-3
|
10 |
+
results: []
|
11 |
+
tags:
|
12 |
+
- axolotl
|
13 |
+
- generated_from_trainer
|
14 |
---
|
15 |
+
# SE6446/Llama-3.1-SuperNova-Lite-Reflection-V1.0
|
16 |
+
This model is a LoRA adaptation of [arcee-ai/Llama-3.1-SuperNova-Lite](https://huggingface.co/arcee-ai/Llama-3.1-SuperNova-Lite) on [thesven/Reflective-MAGLLAMA-v0.1](thesven/Reflective-MAGLLAMA-v0.1).
|
17 |
+
This has been a simple experiment into reflection and the model appears to perform adequately, though I am unsure if it is a large improvement.
|
18 |
+
|
19 |
+
|
20 |
+
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
|
21 |
+
<details><summary>See axolotl config</summary>
|
22 |
+
|
23 |
+
axolotl version: `0.4.1`
|
24 |
+
```yaml
|
25 |
+
base_model: arcee-ai/Llama-3.1-SuperNova-Lite
|
26 |
+
|
27 |
+
load_in_8bit: false
|
28 |
+
load_in_4bit: false
|
29 |
+
strict: false
|
30 |
+
|
31 |
+
datasets:
|
32 |
+
- path: SE6446/MAGllama_Sharegpt
|
33 |
+
type: sharegpt
|
34 |
+
conversation: chatml
|
35 |
+
|
36 |
+
dataset_prepared_path: /workspace/data/last_run_prepared
|
37 |
+
val_set_size: 0.05
|
38 |
+
output_dir: /workspace/data/outputs/out
|
39 |
+
|
40 |
+
sequence_len: 4096
|
41 |
+
sample_packing: true
|
42 |
+
pad_to_sequence_len: true
|
43 |
+
eval_sample_packing: false
|
44 |
+
|
45 |
+
|
46 |
+
hub_model_id: SE6446/Llama-3.1-SuperNova-Lite-Reflections-3
|
47 |
+
hub_strategy: every_save
|
48 |
+
use_auth_token: true
|
49 |
+
|
50 |
+
wandb_project: Bojangles
|
51 |
+
wandb_entity:
|
52 |
+
wandb_watch:
|
53 |
+
wandb_name: run-6
|
54 |
+
wandb_log_model: checkpoint
|
55 |
+
|
56 |
+
gradient_accumulation_steps: 2
|
57 |
+
micro_batch_size: 1
|
58 |
+
num_epochs: 2
|
59 |
+
optimizer: paged_adamw_8bit
|
60 |
+
lr_scheduler: cosine
|
61 |
+
learning_rate: 0.00015
|
62 |
+
|
63 |
+
adapter: lora
|
64 |
+
lora_model_dir:
|
65 |
+
lora_r: 32
|
66 |
+
lora_alpha: 16
|
67 |
+
lora_dropout: 0.05
|
68 |
+
lora_target_linear: true
|
69 |
+
lora_fan_in_fan_out:
|
70 |
+
lora_modules_to_save:
|
71 |
+
- embed_tokens
|
72 |
+
- lm_head
|
73 |
+
|
74 |
+
train_on_inputs: false
|
75 |
+
group_by_length: false
|
76 |
+
bf16: auto
|
77 |
+
fp16:
|
78 |
+
tf32: false
|
79 |
+
|
80 |
+
gradient_checkpointing: true
|
81 |
+
gradient_checkpointing_kwargs:
|
82 |
+
use_reentrant: false
|
83 |
+
early_stopping_patience:
|
84 |
+
resume_from_checkpoint:
|
85 |
+
logging_steps: 1
|
86 |
+
xformers_attention:
|
87 |
+
flash_attention: false
|
88 |
+
|
89 |
+
warmup_steps: 10
|
90 |
+
evals_per_epoch: 2
|
91 |
+
eval_table_size:
|
92 |
+
saves_per_epoch: 1
|
93 |
+
debug:
|
94 |
+
deepspeed:
|
95 |
+
weight_decay: 0.0
|
96 |
+
fsdp:
|
97 |
+
fsdp_config:
|
98 |
+
special_tokens:
|
99 |
+
pad_token: <|end_of_text|>
|
100 |
+
tokens:
|
101 |
+
- <thinking>
|
102 |
+
- </thinking>
|
103 |
+
- <reflection>
|
104 |
+
- </reflection>
|
105 |
+
- <output>
|
106 |
+
- </output>
|
107 |
+
```
|
108 |
+
|
109 |
+
</details><br>
|
110 |
+
|
111 |
+
# Instructions
|
112 |
+
|
113 |
+
## Using hf pipeline
|
114 |
+
|
115 |
+
You **must** use the tokenizer provided with the model as the COT tokens are unique special tokens.
|
116 |
+
It should work on most inference engines that can run llama 3.1
|
117 |
+
|
118 |
+
```python
|
119 |
+
from transformers import pipeline
|
120 |
+
|
121 |
+
pipe = pipeline("text-generation", "SE6446/Llama-3.1-SuperNova-Lite-Reflection-V1.0", device_map="auto",trust_remote_code=True)
|
122 |
+
|
123 |
+
sys_prompt = "You are an AI assistant who reflects before answering the user." #If you put 'reflect' it will typically do so. If you want to vary the character just append it under this.
|
124 |
+
user_prompt = "Explain the difference between Newtonian and Keplerian orbits for a five year old." #Classic
|
125 |
+
|
126 |
+
messages = [
|
127 |
+
{
|
128 |
+
"role": "system",
|
129 |
+
"content": sys_prompt,
|
130 |
+
},
|
131 |
+
{"role": "user", "content": user_prompt}
|
132 |
+
]
|
133 |
+
|
134 |
+
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
135 |
+
prompt = prompt + "<thinking>" #Though not necessary, putting <thinking> under the new line does ensure it reflects. Testing revealed not doing this could cause it to rarely disobey the tokens. Which is bad.
|
136 |
+
# prompt = "<|im_start|>assistant\n[sys prompt]<|im_end|><|im_start|>user\n[user input]<|im_end|><|im_start|>assistant\n<thinking>" should do the trick if you like it old school.
|
137 |
+
|
138 |
+
text = pipe(prompt, max_new_tokens=1000) #max_new_tokens needs to be decently high so it may adequatley perform it's reflection AND output a concise answer.
|
139 |
+
print(text[0]['generated_text'])
|
140 |
+
```
|
141 |
+
|
142 |
+
|
143 |
+
# Training details
|
144 |
+
|
145 |
+
It achieves the following results on the evaluation set:
|
146 |
+
- Loss: 0.6365
|
147 |
+
|
148 |
+
## Training procedure
|
149 |
+
|
150 |
+
I trained it as a LoRA not only because it is cheap, but because it tries to preserve as much of the original parameters as possible. I just wanted it to get used to COT.
|
151 |
+
|
152 |
+
### Training hyperparameters
|
153 |
+
|
154 |
+
The following hyperparameters were used during training:
|
155 |
+
- learning_rate: 0.00015
|
156 |
+
- train_batch_size: 1
|
157 |
+
- eval_batch_size: 1
|
158 |
+
- seed: 42
|
159 |
+
- distributed_type: multi-GPU
|
160 |
+
- num_devices: 4
|
161 |
+
- gradient_accumulation_steps: 2
|
162 |
+
- total_train_batch_size: 8
|
163 |
+
- total_eval_batch_size: 4
|
164 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
165 |
+
- lr_scheduler_type: cosine
|
166 |
+
- lr_scheduler_warmup_steps: 10
|
167 |
+
- num_epochs: 2
|
168 |
+
|
169 |
+
### Training results
|
170 |
+
|
171 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
172 |
+
|:-------------:|:------:|:----:|:---------------:|
|
173 |
+
| 2.7211 | 0.0049 | 1 | 1.4048 |
|
174 |
+
| 0.6381 | 0.5 | 103 | 0.6583 |
|
175 |
+
| 0.4985 | 1.0049 | 206 | 0.6320 |
|
176 |
+
| 0.4992 | 1.5049 | 309 | 0.6365 |
|
177 |
+
|
178 |
+
|
179 |
+
### Framework versions
|
180 |
+
|
181 |
+
- PEFT 0.12.0
|
182 |
+
- Transformers 4.45.0.dev0
|
183 |
+
- Pytorch 2.3.1+cu121
|
184 |
+
- Datasets 2.21.0
|
185 |
+
- Tokenizers 0.19.1
|
186 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|