SE6446 commited on
Commit
ef1d271
1 Parent(s): f944e1e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +182 -195
README.md CHANGED
@@ -1,199 +1,186 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
4
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: llama3.1
4
+ datasets:
5
+ - thesven/Reflective-MAGLLAMA-v0.1
6
+ base_model:
7
+ - arcee-ai/Llama-3.1-SuperNova-Lite
8
+ model-index:
9
+ - name: Llama-3.1-SuperNova-Lite-Reflections-3
10
+ results: []
11
+ tags:
12
+ - axolotl
13
+ - generated_from_trainer
14
  ---
15
+ # SE6446/Llama-3.1-SuperNova-Lite-Reflection-V1.0
16
+ This model is a LoRA adaptation of [arcee-ai/Llama-3.1-SuperNova-Lite](https://huggingface.co/arcee-ai/Llama-3.1-SuperNova-Lite) on [thesven/Reflective-MAGLLAMA-v0.1](thesven/Reflective-MAGLLAMA-v0.1).
17
+ This has been a simple experiment into reflection and the model appears to perform adequately, though I am unsure if it is a large improvement.
18
+
19
+
20
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
21
+ <details><summary>See axolotl config</summary>
22
+
23
+ axolotl version: `0.4.1`
24
+ ```yaml
25
+ base_model: arcee-ai/Llama-3.1-SuperNova-Lite
26
+
27
+ load_in_8bit: false
28
+ load_in_4bit: false
29
+ strict: false
30
+
31
+ datasets:
32
+ - path: SE6446/MAGllama_Sharegpt
33
+ type: sharegpt
34
+ conversation: chatml
35
+
36
+ dataset_prepared_path: /workspace/data/last_run_prepared
37
+ val_set_size: 0.05
38
+ output_dir: /workspace/data/outputs/out
39
+
40
+ sequence_len: 4096
41
+ sample_packing: true
42
+ pad_to_sequence_len: true
43
+ eval_sample_packing: false
44
+
45
+
46
+ hub_model_id: SE6446/Llama-3.1-SuperNova-Lite-Reflections-3
47
+ hub_strategy: every_save
48
+ use_auth_token: true
49
+
50
+ wandb_project: Bojangles
51
+ wandb_entity:
52
+ wandb_watch:
53
+ wandb_name: run-6
54
+ wandb_log_model: checkpoint
55
+
56
+ gradient_accumulation_steps: 2
57
+ micro_batch_size: 1
58
+ num_epochs: 2
59
+ optimizer: paged_adamw_8bit
60
+ lr_scheduler: cosine
61
+ learning_rate: 0.00015
62
+
63
+ adapter: lora
64
+ lora_model_dir:
65
+ lora_r: 32
66
+ lora_alpha: 16
67
+ lora_dropout: 0.05
68
+ lora_target_linear: true
69
+ lora_fan_in_fan_out:
70
+ lora_modules_to_save:
71
+ - embed_tokens
72
+ - lm_head
73
+
74
+ train_on_inputs: false
75
+ group_by_length: false
76
+ bf16: auto
77
+ fp16:
78
+ tf32: false
79
+
80
+ gradient_checkpointing: true
81
+ gradient_checkpointing_kwargs:
82
+ use_reentrant: false
83
+ early_stopping_patience:
84
+ resume_from_checkpoint:
85
+ logging_steps: 1
86
+ xformers_attention:
87
+ flash_attention: false
88
+
89
+ warmup_steps: 10
90
+ evals_per_epoch: 2
91
+ eval_table_size:
92
+ saves_per_epoch: 1
93
+ debug:
94
+ deepspeed:
95
+ weight_decay: 0.0
96
+ fsdp:
97
+ fsdp_config:
98
+ special_tokens:
99
+ pad_token: <|end_of_text|>
100
+ tokens:
101
+ - <thinking>
102
+ - </thinking>
103
+ - <reflection>
104
+ - </reflection>
105
+ - <output>
106
+ - </output>
107
+ ```
108
+
109
+ </details><br>
110
+
111
+ # Instructions
112
+
113
+ ## Using hf pipeline
114
+
115
+ You **must** use the tokenizer provided with the model as the COT tokens are unique special tokens.
116
+ It should work on most inference engines that can run llama 3.1
117
+
118
+ ```python
119
+ from transformers import pipeline
120
+
121
+ pipe = pipeline("text-generation", "SE6446/Llama-3.1-SuperNova-Lite-Reflection-V1.0", device_map="auto",trust_remote_code=True)
122
+
123
+ sys_prompt = "You are an AI assistant who reflects before answering the user." #If you put 'reflect' it will typically do so. If you want to vary the character just append it under this.
124
+ user_prompt = "Explain the difference between Newtonian and Keplerian orbits for a five year old." #Classic
125
+
126
+ messages = [
127
+ {
128
+ "role": "system",
129
+ "content": sys_prompt,
130
+ },
131
+ {"role": "user", "content": user_prompt}
132
+ ]
133
+
134
+ prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
135
+ prompt = prompt + "<thinking>" #Though not necessary, putting <thinking> under the new line does ensure it reflects. Testing revealed not doing this could cause it to rarely disobey the tokens. Which is bad.
136
+ # prompt = "<|im_start|>assistant\n[sys prompt]<|im_end|><|im_start|>user\n[user input]<|im_end|><|im_start|>assistant\n<thinking>" should do the trick if you like it old school.
137
+
138
+ text = pipe(prompt, max_new_tokens=1000) #max_new_tokens needs to be decently high so it may adequatley perform it's reflection AND output a concise answer.
139
+ print(text[0]['generated_text'])
140
+ ```
141
+
142
+
143
+ # Training details
144
+
145
+ It achieves the following results on the evaluation set:
146
+ - Loss: 0.6365
147
+
148
+ ## Training procedure
149
+
150
+ I trained it as a LoRA not only because it is cheap, but because it tries to preserve as much of the original parameters as possible. I just wanted it to get used to COT.
151
+
152
+ ### Training hyperparameters
153
+
154
+ The following hyperparameters were used during training:
155
+ - learning_rate: 0.00015
156
+ - train_batch_size: 1
157
+ - eval_batch_size: 1
158
+ - seed: 42
159
+ - distributed_type: multi-GPU
160
+ - num_devices: 4
161
+ - gradient_accumulation_steps: 2
162
+ - total_train_batch_size: 8
163
+ - total_eval_batch_size: 4
164
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
165
+ - lr_scheduler_type: cosine
166
+ - lr_scheduler_warmup_steps: 10
167
+ - num_epochs: 2
168
+
169
+ ### Training results
170
+
171
+ | Training Loss | Epoch | Step | Validation Loss |
172
+ |:-------------:|:------:|:----:|:---------------:|
173
+ | 2.7211 | 0.0049 | 1 | 1.4048 |
174
+ | 0.6381 | 0.5 | 103 | 0.6583 |
175
+ | 0.4985 | 1.0049 | 206 | 0.6320 |
176
+ | 0.4992 | 1.5049 | 309 | 0.6365 |
177
+
178
+
179
+ ### Framework versions
180
+
181
+ - PEFT 0.12.0
182
+ - Transformers 4.45.0.dev0
183
+ - Pytorch 2.3.1+cu121
184
+ - Datasets 2.21.0
185
+ - Tokenizers 0.19.1
186